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1. Aim and Objective of the subject 

 Understand the micro-architectural design of processors 

 Learn about the various techniques used to obtain performance 

improvement and power savings in current processors 

 To familiarize the students with Instruction Level Parallelism and 

Data-Level Parallelism 

 To expose the students to the concept of Thread Level Parallelism 

 To familiarize the students with Memory and I/O 

2. Need and Importance for the study of the subject 

 Evaluate  performance  of  different  processor  architectures  with 
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respect to various parameters 

 Analyze performance of different Instruction Level Parallelism 

techniques 

 Evaluate performance of Data-Level Parallelism andThread Level 

Parallelism 

 Identify cache and memory related issues in multi-processors 

3. Industry Connectivity and Latest Developments 

 Latest processor’s architecture in computers (SMT, CMP, Intel i7 

Processor’s) are analyzed. 

 VLIW and Vector architectures play a vital role in industries 

4. Industry Visit (Planned if any) --NIL--- 
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2 I Trends in technology Instructions 1 4 T1 17-21 

3 I Power, Energy 2 6 T1 21-26 

4 I Cost 1 7 T1 27-33 

5 I Dependability 1 8 T1 33-36 

6 I Performance Evaluation 1 9 T1 36-44 

UNITII INSTRUCTION LEVEL PARALLELISM 
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20 IV 
Symmetric Shared Memory 
Architectures 

2 30 T1 366-378 

21 IV 
Distributed Shared Memory 
Architectures 

2 32 T1 378-386 

22 IV Performance Issues 1 33 T1 395-400 

23 IV Synchronization 1 34 T1 386-391 

24 IV Models of Memory Consistency 1 35 T1 392-395 

25 IV 
Case studies: Intel i7 Processor, SMT 
Processor, CMP Processor 

2 37 T1 401-405 

UNITV MEMORY ANDI/O 

 
26 

 
V 

Cache Performance- Reducing Cache 
Miss Penalty, Miss Rate, Reducing Hit 
Time 

 
3 

 
40 

 
T1 

 
78-96 

27 V Main Memory and Performance 1 41 T1 72-78 

28 V Memory Technology 1 42 T1 96-105 

29 V Types of Storage Devices 1 43 T1 D12-35 
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DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 

EC6009 ADVANCED COMPUTER ARCHITECTURE 

QUESTION BANK 

 
 

UNIT I - FUNDAMENTALS OF COMPUTER DESIGN 

PART A 

 
1. What are the five trends in computer Technology? (NOV/DEC 2016) 

 Multi processors 

 VLSI Technology Trends 

 Advanced machine learning 
 

 

 

Block Diagram of Computer 
7 

 Internet of Things (IOT) 

 Cloud computing 

What are the components of a computer? [May/June 2014] 

 Input unit 

 Memory unit 

 Arithmetic and Logic Unit 

 Output unit 

 Control unit 

3. Draw the block diagram of computer. [R-2013] 
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1. What is Execution time/Response time??[May/June 2015] 

Response time also called execution time. The total time required for the computer 

to complete a task, including disk accesses, memory accesses, I/O activities, 

operating system overhead, CPU execution time, and so on. 

 
2. How to find the cost of an Integrated circuit ? (NOV/DEC 2016) 

The cost of an integrated circuit varies between computers. In case of 

personal mobile devices increasing the performance of the whole system on chip 

(SOC), the cost of IC is greater than cost of PMD. 

Cost of a packaged IC = ( cost of die + cost of testing die + cost of packing and 
 

 
 

5. What is clock cycle and clock period? [R-2013] 

Clock cycle: The time for one clock period, usually of the processor clock, this 

runs at a constant rate. 

Clock period: The length of each clock cycle. 

 
 

6. Define CPI and Write the expression for CPI time. [R-2013] 

The term Clock Cycles Per Instruction Which is the average number of clock 

cycles each 3 instruction takes to execute, is often abbreviated as CPI. 

CPI time= CPU clock cycles for a program / Instruction count 

 
 

7. State and explain the performance equation?[R-2013] 
 

8 

final test ) / final test field. 

4. What is CPU execution time, user CPU time and system CPU time and 

Write the expression for CPU time? ?[May/June 2014] 

CPU time: The actual time the CPU spends computing for a specific task. 

User CPU time: The CPU time spent in a program itself. 

System CPU time: The CPU time spent in the operating system performing tasks 

on behalf the program. 

CPU time= CPU clock cycles for a program x Clock cycle time 

or 

CPU time= CPU clock cycles for a program / Clock rate 
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This MIPS measurement is also called Native MIPS to distinguish it from some 

alternative definitions of MIPS. 

MIPS Rate. The rate at which the instructions are executed at a given time. 

9. Define Throughput and Throughput rate. [R-2013] 

Throughput -The total amount of work done in a given time. 

Throughput rate-The rate at which the total amount of work done at a given time. 

10. Define Amdahl’s law. [R-2013] 

It States that performance improvement to be gained by using faster mode of 

execution limited by the fraction of time the faster mode can be used. Amdahl’s 

law defines the term speedup which is given by, 

Suppose that the average number of basic steps needed to execute one machine 

instruction is S, where each basic step is completed in one clock cycle. If the clock 

cycle rate is R cycles per second, the processor time is given by T = (N x S) / R. 

This is often referred to as the basic performance equation. Where N denotes 

number of machine Instructions. 

 
8. Define MIPS and MIPS Rate.?[Nov/Dec 2014] 

MIPS: Million Instructions Per Second (MIPS) is a measurement of program 

execution speed based on the number of millions of instructions. MIPS is computed 

as:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑓𝑒𝑛𝑡𝑖𝑟𝑒𝑡𝑎𝑠𝑘𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑤ℎ𝑒𝑛𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

 
 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑓𝑜𝑟𝑒𝑛𝑡𝑖𝑟𝑒𝑡𝑎𝑠𝑘𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 

 
 

 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑓𝑜𝑟𝑒𝑛𝑡𝑖𝑟𝑒𝑡𝑎𝑠𝑘𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 

 
 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑜𝑓𝑒𝑛𝑡𝑖𝑟𝑒𝑡𝑎𝑠𝑘𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑤ℎ𝑒𝑛𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

Amdahl’s law states that in parallelization, if P is the proportion of a system or 

program that can be made parallel, and 1-P is the proportion that remains serial, 

then the maximum speed up that can be achieved using N number of processors is 

1/((1-P)+(P/N). 
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) 

11. Calculate speedup overall using Amdahl’s law given that a new CPU, which 

is 10 times faster than the original CPU on computation, is additionally 

introduced. The original CPU is busy with computations 40% of time and I/O 

wait time is 60%.[R-2013] 

Given: Fraction enhanced=0.4, Speedup enhanced=10 
 
 

 

speedupoverall = 
(𝟏 − Fraction 

𝟏 
 
enhanced 

 
 

) + 
Fractione𝚗ha𝚗𝔀ed 

Speedupe𝚗ha𝚗𝔀ed 

speedup = 
1 

=1.5625 

overall (0.6)+
0.4
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12. What do you infer from the term dependability?(Apr/may 2017) 
 

Solution: 

Total die area is 0.49cm2 

For larger die 

𝑫𝒊𝒆𝒚𝒊𝒆𝒍𝒅 = 𝟏 + (
𝟎.𝟔𝒙𝟏 −𝟒=0.57 
𝟒 

 
 

For smaller die 

𝑫𝒊𝒆𝒚𝒊𝒆𝒍𝒅 = 𝟏 + (
𝟎.𝟔𝒙𝟎.𝟒𝟗

)−𝟒=0.75 
𝟒 
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Computers not only need to be fast, they need to be dependable. Since any 

physical device can fail, the system must dependable by including redundant 

components that can take over when a failure occurs and to help to detect failures. 

13. Find the number of dies per 30 cm wafer for a die that is 0.7 cm on a side. 

[R-2013] 

Solution: 

Total die area is 0.49cm2
 

𝝅𝒙 
𝟑𝟎

)𝟐 ( 
𝑫𝒊𝒆𝒔𝒑𝒆𝒓𝒘𝒂𝒇𝒆𝒓 = 𝟐 

𝟎. 𝟒𝟗 
− 

𝝅𝒙𝟑𝟎 

√𝟐𝒙𝟎. 𝟒𝟗 
= 𝟏𝟑𝟒𝟕 

14. Find the yield for dies that are I cm on a side and 0.7 cm on a side, 

assuming a defect density of 0.6 cm2. [R-2013] 
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15. What are the two main measures of dependability? [R-2013] 

Module reliability: It is a measure of the continuous service accomplishment from 

a reference initial instant. 

Module Availability: It is a measure of the service accomplishment with respect 

to the alternation between the two states of accomplishment and interruption. 
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PART B 

1. Explain the Components of a computer system with the block diagram in 

detail. 

[R-2013] 

A computer consists of five functionally independent main parts. They are 

1. Input 

2. Memory 

3. Arithmetic and logic 

4. Output 

5. Control unit 

Basic functional units of a computer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Whenever a key is pressed; the corresponding letter or digit is automatically 

translated into its corresponding binary code and transmitted over cable to 

the memory of the computer. 

Memory unit 

Memory unit is used to store programs as well as data. Memory is classified into 

primary and secondary storage. 

Primary storage 

It also called main memory. It operates at high speed and it is expensive. It is made 

up of large number of semiconductor storage cells, each capable of storing one bit 

of information. These cells are grouped together in a fixed size called word. 

 

 
12 

The computer accepts programs and the data through an input and stores them in 

the memory. The stored data are processed by the arithmetic and logic unit under 

program control. The processed data is delivered through the output unit. All above 

activities are directed by control unit. 

a. Input unit 

The computer accepts coded information through input unit. The input can be from 

human operators, electromechanical devices such as keyboards or from other 

computer over communication lines. 

Examples of input devices are Keyboard, joysticks, trackballs and mouse are 

used as graphic input devices in conjunction with display 

Keyboard 

 It is a common input device. 
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This facilitates reading and writing the content of one word (n bits) in single basic 

operation instead of reading and writing one bit for each operation. 

Secondary storage 

It is slow in speed. It is cheaper than primary memory. Its capacity is high. It is used 

to store information that is not accessed frequently. Various secondary devices are 

magnetic tapes and disks, optical disks (CD-ROMs), floppy etc. 

 
 
 
 
 
 
 
 

 

Registers: 

Registers are high speed storage elements available in the processor. Each register 

can store one word of data. When operands are brought into the processor for any 

operation, they are stored in the registers. Accessing data from register is faster 

than that of the memory. 

c. Output unit 

The function of output unit is to produce processed result to the outside world in 

human understandable form. Examples of output devices are Graphical display, 

Printers such as inkjet, laser, dot matrix and so on. The laser printer works faster. 
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Figure: The basic components of computer system 

b. Arithmetic and logic unit 

Arithmetic and logic unit (ALU) and control unit together form a processor. Actual 

execution of most computer operations takes place in arithmetic and logic unit of the 

processor. Example: Suppose two numbers located in the memory are to be added. 

They are brought into the processor, and the actual addition is carried out 

by the ALU. 
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A set of control lines carries the signals used for timing and synchronization of 

events in all units Example: Data transfers between the processor and the memory 

are controlled by the control unit through timing signals. Timing signals are the 

signals that determine when a given action is to take place. 

Basic Operational Concept 

Computer Components: 

Top-Level view 

PC the program counter contains the address of the assembly language 

instruction to be executed next. IR the instruction register contains the binary 
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Figure: Computer Components 

d. Control unit 

Control unit coordinates the operation of memory, arithmetic and logic unit, input 

unit, and output unit in some proper way. The control unit issues control signals 

that cause the CPU (and other components of the computer) to fetch the instruction 

to the IR (Instruction Register) and then execute the actions dictated by the machine 

language instruction that has been stored there. Control units are well 

defined, physically separate unit that interact with other parts of the machine. 
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word corresponding to the machine language version of the instruction currently 

being executed. 

MAR the memory address register contains the address of the word in main 

memory that is being accessed. The word being addressed contains either data or 

a machine language instruction to be executed. 

MBR the memory buffer register (also called MDR for memory data register) is the 

register used to communicate data to and from the memory. 

The operation of a processor is characterized by a fetch-decode-execute cycle. In 

the first phase of the cycle, the processor fetches an instruction from memory. The 

address of the instruction to fetch is stored in an internal register named the program 

counter, or PC. As the processor is waiting for the memory to respond 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

over again by entering the fetch phase for the next instruction. The CPU exchanges 

data with memory. For this purpose, it typically makes use of two internal (to the 

CPU) register: 

 A memory address register (MAR), which specifies the address in memory 

for the next read or write, and 

 A memory buffer register (MBR), which contains the data to be written into 

memory or receives the data read from memory. 

An I/O addresses register (I/OAR) specifies a particular I/O device. An I/O buffer 

(I/OBR) register is used for the exchange of data between an I/O module and the 

CPU.A memory module consists of a set of locations, defined by sequentially 

numbered address. Each location contains a binary number that can be 

15 

with the instruction, it increments the PC. This means the fetch phase of the next 

cycle will fetch the instruction in the next sequential location in memory. In the 

decode phase the processor stores the information returned by the memory in 

another internal register, known as the instruction register, or IR. The IR now holds 

a single machine instruction, encoded as a binary number. The processor decodes 

the value in the IR in order to figure out which operations to perform in the next 

stage.In the execution stage the processor actually carries out the instruction. This 

step often requires further memory operations; for example, the instruction may 

direct the processor to fetch two operands from memory, add them, and store the 

result in a third location (the addresses of the operands and the result are also 

encoded as part of the instruction). At the end of this phase the machine starts 

the cycle 
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interpreted as either an instruction or data. An I/O module transfers data from 

external devices to CPU and memory, and vice versa. 

It contains internal buffers for temporarily holding these data until they can be sent 

on. Instructions can be classified as one of three major types: arithmetic/logic, data 

transfer, and control. Arithmetic and logic instructions apply primitive functions of 

one or two arguments, for example addition, multiplication, or logical AND. 

 
2. State the CPU performance equation and discuss the factors that affect 

the performance of a computer. [R-2013]?[May/June 2014] 

Response time: The time between the start and the completion of an event also 

referred to as execution time. 

 

The performance and execution time are reciprocals, increasing performance 

decreases execution time. To help avoid confusion between the terms Increasing 

and decreasing, we usually say improve performance or improve execution time 

when we mean increase performance and decrease execution time. 

CPU performance equation: 

All computers are constructed using a clock running at a constant rate. These 

discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or 

clock cycles. Computer designers refer to the time of a clock period by its duration 

(e.g., 1 ns) or by its rate (e.g., 1 GHz). CPU time for a program can then be 

expressed two ways: 
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Throughput: The total amount of work done in a given time. In comparing design 

alternatives, we often want to relate the performance of two different machines, say 

X and Y. The machine X is faster than Y is used here to mean that the response 

time or execution time is lower on X than on Y for the given task. In 

particular, if X is n times faster than Y 

Since execution time is the reciprocal of performance, the following relationship 
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CPU time = CPU clock cycles for a program x Clock cycle time 

CPU time=CPU clock cycle to exe a pgm / clock rate 

In addition to the number of clock cycles needed to execute a program, we can also 

count the number of instructions executed, the instruction path length or instruction 

count (IC). 

CPI is computed as: 
 

 
By transposing instruction count in the above formula, clock cycles can be defined 

As IC * CPI. This allows us to use CPI in the execution time formula 

 
 

Assume that average number of basic steps needed to execute one machine 

instruction is S, where each basic step is completed in one clock cycle. If the clock 

rate is R cycles per second, the program execution time is given by T = (N x S) / R 

this is often called Basic performance equation. 

To achieve high performance, the performance parameter T should be reduced. T 

value can be reduced by reducing N and S, and increasing R. 

 Value of N is reduced if the source program is compiled into fewer number of 

machine instructions. 

 Value of S is reduced if instruction has a smaller no of basic steps to perform 

or if the execution of the instructions is overlapped. 
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CPU to calculate the number of total CPU clock cycles as, 

Basic performance equation 

Let T be the time required for the processor to execute a program in high level 

language. The compiler generates machine language object program 

corresponding to the source program. Assume that complete execution of the 

program requires the execution of N machine language instructions. 

http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

 Value of R can be increased by using high frequency clock, ie. Time 

required to complete a basic execution step is reduced. 

 N, S and R are dependent factors. Changing one may affect another. 

Choosing Programs to Evaluate Performance 

There are five levels of programs used in such circumstances, listed below in 

decreasing order of accuracy of prediction. 

1. Real applications-Real applications have input, output, and options that a user 

can select when running the program. There is one major downside to using real 

applications as benchmarks: Real applications often encounter portability problems 

arising from dependences on the operating system or compiler. Enhancing  

portability  often  means  modifying  the  source  and  sometimes 

 
isolate performance of individual features of a machine to explain the reasons for 

differences in performance of real programs. 

4. Toy benchmarks-Toy benchmarks are typically between 10 and 100 lines of 

code and produce a result the user already knows before running the toy program. 

Programs like Sieve of Eratosthenes, Puzzle, and Quicksort are popular because 

they are small, easy to type, and run on almost any computer. The best use of such 

programs is beginning programming assignments. 

5. Synthetic benchmarks- Synthetic benchmarks try to match the average 

frequency of operations and operands of a large set of programs. Whetstone and 

Dhrystone are the most popular synthetic benchmarks. 
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eliminating some important activity, such as interactive graphics, which tends to be 

more system-dependent.Modified (or scripted) applications-In many cases, real 

applications are used as the building block for a benchmark either with modifications 

to the application or with a script that acts as stimulus to the application. Applications 

are modified for two primary reasons: to enhance portability or to focus on one 

particular aspect of system performance. For example, to create a CPU-oriented 

benchmark, I/O may be removed or restructured to minimize its impact on execution 

time. Scripts are used to reproduce interactive behavior, which might occur on a 

desktop system, or to simulate complex multiuser interaction, which occurs in a 

server system. 

Kernels-Several attempts have been made to extract small, key pieces from real 

programs and use them to evaluate performance. Kernels are best used to 
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 Load balancing 

 Optimizing communication and synchronization 

3. (i)Explain the need to switch from uniprocessors to multiprocessors and 

draw the performance chart for processors over years. [R-2013]?[May/June 

2013] 

 Multicore microprocessors 

 More than one processor per chip 

 Requires explicitly parallel programming 

 Compare with instruction level parallelism 

 Hardware executes multiple instructions at once 

 Hidden from the programmer 

 Hard to do 

 Programming for performance 
 
 
 

 

Figure Growth in processor performance since the mid-1980s 
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(ii) Explain how clock rate and power are related to each other in 

microprocessor over years with a neat graph (or) Elaborate about power wall 

with neat sketch. [R-2013] 

The dominant technology for integrated circuits is called CMOS (complementary 

metal oxide semiconductor). For CMOS, the primary source of energy consumption 

is so-called dynamic energy— that is, energy that is consumed when transistors 

switch states from 0 to 1 and vice versa. The dynamic energy depends on the 

capacitive loading of each transistor and the voltage applied. 

 
 

 

 

technology used to build computers and from innovation in computer design. 

During the first 25 years of electronic computers, both forces made a major 

contribution; but beginning in about 1970, computer designers became largely 

dependent upon integrated circuit technology. During the 1970s, performance 

continued to improve at about 25% to 30% per year for the mainframes and 

minicomputers that dominated the industry. 

The late 1970s after invention of microprocessor the growth roughly 

increased 35% per year in performance. This growth rate, combined with the cost 

advantages of a mass-produced microprocessor, led to an increasing fraction of the 

computer business. In addition, two significant changes are observed in 

computer industry. 
20 

The power required per transistor is just the product of energy of a transition and 

the frequency of transitions: 

Frequency switched is a function of the clock rate. The capacitive load per transistor 

is a function of both the number of transistors connected to an output (called the 

fanout) and the technology, which determines the capacitance of both wires and 

transistors. 

(iii) Explain the fundamentals of computer Design. [R-2013] 

Computer technology has made incredible progress in the roughly from last 55 

years. This rapid rate of improvement has come both from advances in the 
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and the use of caches. 

The combination of architectural and organizational enhancements has led to 20 

years of sustained growth in performance at an annual rate of over 50%. Figure 

shows the effect of this difference in performance growth rates. 

The effect of this dramatic growth rate has been twofold. 

• First, it has significantly enhanced the capability available to computer users. 

For many applications, the highest performance microprocessors of today 

outperform the supercomputer of less than 10 years ago. 

• Second, this dramatic rate of improvement has led to the dominance of micro- 

processor-based computers across the entire range of the computer design. 
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Fig. Growth in microprocessor Performance since the mid 1980s has been 

substantially higher than in earlier years as shown by plotting SPECint 

performance. 

• First, the virtual elimination of assembly language programming reduced the 

need for object-code compatibility. 

• Second, the creation of standardized, vendor-independent operating systems, 

such as UNIX and its clone, Linux, lowered the cost and risk of bringing out 

a new architecture. 

These changes made it possible to successfully develop a new set of architectures, 

called RISC (Reduced Instruction Set Computer) architectures. In the early 1980s. 

The RISC-based machines focused the attention of designers on 

two critical performance techniques, the exploitation of instruction-level parallelism 
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4 (i) Explain the trends in technologies for building computer over time. (or) 

Explain various Technology trends in computer industry. [R-2013] 

The designer must be especially aware of rapidly occurring changes in 

implementation technology. The following Four implementation technologies 

changed the computer industry. 

1. Integrated circuit logic technology: Transistor density increases by about 35% 

per year, and die size increases 10% to 20% per year. The combined effect is a 

growth rate in transistor count on a chip of about 55% per year. 

2. Semiconductor DRAM: Density increases by between 40% and 60% per year 

and Cycle time has improved very slowly, decreasing by about one-third in 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Integrated circuit processes are characterized by the feature size, which is 

decreased from 10 microns in 1971 to 0.18 microns in 2001. Since a transistor is a 

2-dimensional object, the density of transistors increases quadratically with a linear 

decrease in feature size. The increase in transistor performance, this combination 

of scaling factors leads to a complex interrelationship between transistor 

performance and process feature size. 

Wires 

The signal delay for a wire increases in proportion to the product of its resistance 

and capacitance. As feature size shrinks wires get shorter, but the resistance and 

capacitance per unit length gets worse. 
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years. Bandwidth per chip increases about twice as fast as latency decreases. In 

addition, changes to the DRAM interface have also improved the bandwidth. 

3. Magnetic disk technology: it is improving more than 100% per year. Prior to 

1990, density increased by about 30% per year, doubling in three years. It appears 

that disk technology will continue the faster density growth rate for some time to 

come. Access time has improved one-third in 10 years. 

4. Network Technology: Network Performance depends both on the performance 

of switches and on the performance of the transmission system, both latency and 

bandwidth can be improved, though recently bandwidth has been the primary focus. 

Scaling of Transistor Performance, Wires, and Power in Integrated Circuits 

Transistor Performance: 
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Since both resistance and capacitance depend on detailed aspects of the process, 

the geometry of a wire, the loading on a wire, and even the adjacency to other 

structures. 

Power 

Power also provides challenges as devices are scaled. For modern CMOS 

microprocessors, the dominant energy consumption is in switching transistors. The 

energy required per transistor is proportional to the product of the load capacitance 

of the transistor, the frequency of switching, and the square of the voltage. 

Moore’s Law 

Gordon Moore (Founder of Intel) observed in 1965 that the number of transistors 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure: Moore’s law 
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that could be crammed on a chip doubles every year. 

Based on SPEED, the CPU has increased dramatically, but memory and disk have 

increased only a little. This has led to dramatic changed in architecture, Operating 

Systems, and Programming practices. 

Capacity Speed (latency) 

Logic 2x in 3 years 2x in 3 years 

DRAM 4x in 3 years 2x in 10 years 

Disk 4x in 3 years 2x in 10 years 

Electronics technology continues to evolve Increased capacity and performance 

Reduced cost 
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(ii) Explain the trends in Cost, Price for building computer over time. (or) 

Explain the impact of Time, volume and commodification on Cost and Price. 

[R-2013] 

 Price: selling a finished good 

 1999: more than half the PCs sold were priced at less than $1000 

 Cost: the amount spent to produce it, including overhead 

The Impact of Time, Volume, Commodification: 

 Time 

 The cost of a manufactured computer component decreases over time 

even without major improvements in the basic implementation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Between the start of a project and the shipping of a produce, say, two years, the 

cost of a new DRAM drops by a factor of between 5 and 10 in constant dollars. 
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technology. 

 The underlying principle that drives costs down is the learning curve 

manufacturing costs decrease over time. 

  Yield: the percentage of the manufactured devices that survive the 

testing procedure. 

As the technology matures over time, the yield improves and hence, 

things get cheaper. 

 Prices of six generations of DRAMs 

The following Figure plots the price of a new DRAM chip over its 

lifetime. 
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 Price of an Intel Pentium III at a Given Frequency 

It decreases over time as yield enhancements decrease the cost of a good 

die and competition forces price reductions. 

 Wafer and Dies 

Exponential cost decrease since silicon manufacture technology basically the 

same: 

A wafer is tested and chopped into dies that are packaged 

 Volume 

 Volume is the second key factor in determining cost. Increasing volume 

affecting the cost in several ways. 

 Increasing volume decreases cost (time for learning curve), 
 

 
 

Cost of IC = 
𝒄𝒐𝒔𝒕𝒐𝒇𝒅𝒊𝒆 + 𝑪𝒐𝒔𝒕𝒐𝒇𝒕𝒆𝒔𝒕𝒊𝒏𝒈𝒅𝒊𝒆 + 𝑪𝒐𝒔𝒕𝒐𝒇𝒑𝒂𝒄𝒌𝒂𝒈𝒊𝒏𝒈𝒂𝒏𝒅𝒇𝒊𝒏𝒂𝒍𝒕𝒆𝒔𝒕 

 
 

𝑭𝒊𝒏𝒂𝒍𝒕𝒆𝒔𝒕𝒚𝒊𝒆𝒍𝒅 

A greater portion of the cost that varies between machines. 

𝒄𝒐𝒔𝒕𝒐𝒇𝒘𝒂𝒇𝒆𝒓 
𝒄𝒐𝒔𝒕𝒐𝒇𝒅𝒊𝒆 =  

 

# 𝑫𝒊𝒆𝒔𝒑𝒆𝒓𝒘𝒂𝒇𝒆𝒓𝒙𝑫𝒊𝒆𝒚𝒊𝒆𝒍𝒅 

 
 

 
# 𝑫𝒊𝒆𝒔𝒑𝒆𝒓𝒘𝒂𝒇𝒆𝒓 = 

𝝅𝒙𝑾𝒂𝒇𝒆𝒓𝒓𝒂𝒅𝒊𝒖𝒔𝟐 
 

 

𝑫𝒊𝒆𝑨𝒓𝒆𝒂 

𝝅𝒙𝑾𝒂𝒇𝒆𝒓𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 
− 

√𝟐𝒙𝑫𝒊𝒆𝑨𝒓𝒆𝒂 

Number of Dies per wafer is sensitive to die size. 

𝐷𝑖𝑒𝑦𝑖𝑒𝑙𝑑 = Wafer yield𝑥 (1 + (
𝐷𝑒𝑓𝑒𝑐𝑡𝑠𝑝𝑒𝑟𝑢𝑛𝑖𝑡𝑎𝑟𝑒𝑎𝑥𝐷𝑖𝑒𝐴𝑟𝑒𝑎

)−
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 Increases purchasing and manufacturing efficiency 

 Commodities 

 Commodities are Products are sold by multiple vendors in large volumes 

are essentially identical 

 Virtually all the products sold on the shelves of grocery stores are 

commodities, as are standard DRAMs, disks, monitors, and keyboards. 

 In the past 10 years, much of the low end of the computer business has 

become a commodity business focused on building IBM-compatible PCs. 

 Improved competition leads to reduced cost 

 Cost of an Integrated Circuit (IC) 

The cost of packaged integrated circuit is 
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In today’s technology, =4,  
 

 

5.(i) Suppose we have made the following measurements: 

Frequency of FP operations (other than FPSQR) = 25% Average CPI of 

FP operations = 4.0 Average CPI of other instructions = 1.33 Frequency of 

FPSQR= 2% CPI of FPSQR = 20 Assume that the two design alternatives are 

to decrease the CPI of FPSQR to 2 or to decrease the average CPI of all FP 

operations to 2.5. Compare these two design alternatives using the CPU 

performance equation.  [R-2013] 

 

(ii)A program runs in 20 seconds on machine A with a clock speed of 200 

MHz. A computer architect wants to build machine B, which will run this 

program in 6 seconds. The architect has determined that a substantial 

increase in the clock rate possible, but this will affect the design of the rest of 

the CPU, causing machine B to require 1.2 times as many clock cycle as 

machine A for this program. What clock rate should he target for a best 

design? [R-2013] 

Solution: 
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CPU time for B may be found as shown below 
 

 

 
 

= 
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Therefore ,Machine B must have four times the clock rate of A to run the program 

in 6 seconds 
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UNIT II 

INSTRUCTION LEVEL PARALLELISM 

PART A 

1. What is ILP? [Nov/Dec 2012][May/June 2012] 

ILP = Instruction level parallelism 

• Multiple operations (or instructions) can be executed in parallel 

 

2. What are the needs of ILP? [R-2013] 

• Sufficient resources 

• Parallel scheduling 

 Hardware solution 
 

– e.g., because they may involve a memory reference 

• It simplifies the compiler 

• Allows code compiled for one machine to run efficiently on a different machine, 

with different number of function units (FUs), and different pipelining 

 
6. What is branch prediction? [May/June 2013] 

• High branch penalties in pipelined processors: 

– With on average 20% of the instructions being a branch, the maximum ILP is five 

• CPI = CPIbase + fbranch * fmisspredict * penalty 

– Large impact if: 

– Penalty high: long pipeline 
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 Software solution 

• Application should contain ILP 

3. What are the various hazards?[May/June 2014] [April/May 2017] 

Three types of hazards 

1.Structural 2.Data dependence 3.Control dependence 

What is dynamic scheduling? [May/June 2013](NOV/DEC 2016) 

• Dynamic scheduling: hardware rearranges instruction execution to reduce stalls 

Allow instructions behind stall to proceed 

What are the advantages of dynamic scheduling? (Apr/may 2017) 

• Handles cases when dependences unknown at compile time 
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– CPIbase low: for multiple-issue processors 

 

7. What is speculation? [May/June 2012] 

Hardware-based speculation follows the predicted flow of data values to choose 

when to execute instructions. This method of executing programs is essentially a 

data flow execution: Operations execute as soon as their operands are available. 

 
8. What are the four steps involved in instruction execution? [R-2013] 

1.Issue 2. Execute 3.Write result 4.Commit 

 

9. How to calculate the value of CPI. [R-2013] 

The value of the CPI (cycles per instruction) for a pipelined processor is the sum of 
 

 

12. What is instruction commit? [R-2013] 

When an instruction is no longer speculative, we allow it to update the register file 

or memory; we call this additional step in the instruction execution sequence 

instruction commit. 

 
13. What is reorder buffer? [R-2013] 

Instruction execution sequence requires an additional set of hardware buffers that 

hold the results of instructions that have finished execution but have not committed. 

This hardware buffer is called the reorder buffer. 
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the base CPI and all contributions from stalls: Pipeline CPI = Ideal pipeline 

CPI+Structuralstalls+Data hazard stalls + Control stalls 

10. What is ideal pipeline CPI? [Nov/Dec 2013] 

The ideal pipeline CPI is a measure of the maximum performance attainable by the 

implementation. By reducing each of the terms of the right-hand side, we minimize 

the overall pipeline CPI or, alternatively, increase the IPC (instructions 

per clock). 

11. What are the types of data dependencies? 

[April/May 2015] (NOV/DEC 2016) 

There are three different types of dependences: data dependences (also called 

true data dependences), name dependences, and control dependences. 
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14. What is control speculation? [R-2013] 

Loads incur high latency 

– Need to schedule loads as early as possible 

– Two barriers – branches and stores 

Control speculation – move loads above branches 

 

15. What is principle of locality? [Nov/Dec 2016] 

An implication of locality is that we can predict with reasonable accuracy what 

instructions and data a program will use in the near future based on its accesses in 

the recent past. The principle of locality also applies to data accesses, though not 

as strongly as to code accesses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
30 



 

 

 

 

PART B 

1. (i)What is multithreading and explain the approaches of multithreading. 

[May/Jun 2014], [Apr/ May 2015] 

Multithreading allows multiple threads to share the functional units of a single 

processor in an overlapping fashion. To permit this sharing, the processor must 

duplicate the independent state of each thread. For example, a separate copy of the 

register file, a separate PC, and a separate page table are required for each thread. 

Software and hardware multithreading 

 A "hardware thread" is a physical CPU or core. So, a 4 core CPU can support 

4 hardware threads at once - the CPU really is doing 4 things at the 

4 threads, and have more 4 or more cores, there's a good chance your 4 

threads will run truly in parallel on 4 separate cores, if the cores are idle. 

 Multithreading computers have hardware support to efficiently execute 

multiple threads. These are distinguished from multiprocessing systems 

(such as multi-core systems) in that the threads have to share the resources 

of a single core: the computing units, the CPU caches and the translation 

look aside buffer (TLB). 

 Where multiprocessing systems include multiple complete processing units, 

multithreading aims to increase utilization of a single core by leveraging 

thread-level as well as instruction-level parallelism. As the two techniques 
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same time. 

 One hardware thread can run many software threads. In modern operating 

systems, this is often done by time-slicing - each thread gets a few 

milliseconds to execute before the OS schedules another thread to run on 

that CPU. Since the OS switches back and forth between the threads quickly, 

it appears as if one CPU is doing more than one thing at once, but in reality, 

a core is still running only one hardware thread, which switches between 

many software threads. 

 Modern JVMs map java threads directly to the native threads provided by the 

OS, so there is no inherent overhead introduced by java threads vs native 

threads. As to hardware threads, the OS tries to map threads to cores, if there 

are sufficient cores. So, if you have a java program that starts 
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are complementary, they are sometimes combined in systems with multiple 

multithreading CPUs and in CPUs with multiple multithreading cores. 

There are two main approaches to multithreading. 

Cycle-by-cycle interleaving (Fine Grained Multithreading) 

Fine-grained multithreading switches between threads on each instruction, 

causing the execution of multiples threads to be interleaved. This interleaving is 

often done in a round-robin fashion, skipping any threads that are stalled at that 

time. 

The next instruction of a thread is fed into the pipeline after the retirement of 

the previous instruction. This eliminates the need for forwarding data paths, but 

implies that there must be as many threads as pipeline stages. This can be a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simultaneous Multithreading: Converting Thread-Level Parallelism into 

Instruction-Level Parallelism: 

Simultaneous multithreading (SMT) is a variation on multithreading that uses the 

resources of a multiple issue, dynamically-scheduled processor to exploit TLP at the 

same time it exploits ILP. The key insight that motivates SMT is that modern 

multiple-issue processors often have more functional unit parallelism available than 

a single thread can effectively use. Furthermore, with register renaming and 

dynamic scheduling, multiple instructions from independent threads can be issued 

without regard to the dependences among them; the resolution of the dependences 

can be handled by the dynamic scheduling capability. 
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problem for contemporary super pipelined processors. Furthermore, in order to fully 

hide the memory latency, the number of threads must be larger than the memory 

latency in cycles. 

Block interleaving (Coarse Grained Multithreading) 

Coarse-grained multithreadingwas invented as an alternative to fine-grained 

multithreading. A coarse-grained multithreading switches thread only on costly 

stalls, such as level two caches misses. 

It is also called as block interleaving; the processor starts executing another 

thread if the current thread experiences an event that is predicted to have a 

significantly long latency. If it can be predicted that the latency is larger than the cost 

of a thread switch, then the processor can at least hide part of the latency by 

executing another thread. 

http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

 Simultaneous multithreading (SMT) tries to eliminate 

horizontalwaste(unused instruction slots in a cycle) because it fetches and 

issues instructions from different threads simultaneously. 

 SMT is designed for superscalar processors, however. To implement this 

technique in a VLIW processor, several VLIW instructions have to be 

combined at runtime. This can be very difficult and may increase the cycle 

time because resource conflicts may occur since not every operation can be 

placed in each instruction slot. a bit needs to be added to every VLIW 

instruction to indicate that it can be issued across multiple cycles without 

violating dependencies. 

Figure illustrates the differences in a processor’s ability to exploit the resources 
 

 

In the superscalar without multithreading support, the use of issue slots is limited 

by a lack of ILP. 

Hardware Multithreading Techniques 

Basically, three different hardware multithreading techniques can be distinguished: 

 cycle-by-cycle interleaving (Fine Grained Multithreading) 

 block interleaving (Coarse Grain Multithreading) 
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of a superscalar for the following processor configurations: 

n a superscalar with no multithreading support, 

n a superscalar with coarse-grained multithreading, 

n a superscalar with fine-grained multithreading, and 

n a superscalar with simultaneous multithreading. 

Issue Slots 

Superscalar Coarse MT Fine MT SMT 
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 Simultaneous multithreading. (SMT) 

In the coarse-grained multithreaded superscalar, the long stalls are partially hidden 

by switching to another thread that uses the resources of the processor. 

In the fine-grained case, the interleaving of threads eliminates fully empty slots. 

Because only one thread issues instructions in a given clock cycle. 

In the SMT case, thread-level parallelism (TLP) and instruction-level parallelism 

(ILP) are exploited simultaneously; with multiple threads using the issue slots in a 

single clock cycle. 

(ii)Compare hardware and software speculation mechanisms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Explain hardware based speculation to overcome the control 

dependencies. [Apr/ May 2015], [Nov/ Dec 2014], [May/Jun 2013] 

Hardware-based speculation combines three key ideas: 

 Dynamic branch prediction to choose which instructions to execute 

 Speculation to allow the execution of instructions before the control 

dependences are resolved (with the ability to undo the effects of an 

incorrectly speculated sequence) 
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 Dynamic scheduling to deal with the scheduling of different 

combinations of basic blocks. 

Hardware-based speculation follows the predicted flow of data values to 

choose when to execute instructions. This method of executing programs 

is essentially a data flow execution: Operations execute as soon as their 

operands are available. 

Role of commit stage: 

Using the bypassed value is like performing a speculative register read, since we 

do not know whether the instruction providing the source register value is providing 

the correct result until the instruction is no longer speculative. When an instruction 

is no longer speculative, we allow it to update the register file or 

execution but have not committed. This hardware buffer, which we call the 

reorder buffer, is also used to pass results among instructions that may be 

speculated. 

ROLE OF RE-ORDER BUFFER: 

 The reorder buffer (ROB) provides additional registers in the same way as the 

reservation stations in Tomasulo's algorithm extend the register set. The ROB 

holds the result of an instruction between the times the operation 

associated with the instruction completes and the time the instruction 

commits. Hence, the ROB is a source of operands for instructions, just as the 

reservation stations provide operands in Tomasulo's algorithm. 
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memory we call this additional step in the instruction execution sequence 

instruction commit. 

KEY IDEA BEHIND HARDWARE SPECULATION: 

 The key idea behind implementing speculation is to allow instructions to execute 

out of order but to force them to commit in order and to prevent any irrevocable 

action (such as updating state or taking an exception) until an instruction 

commits. 

 Hence, when we add speculation, we need to separate the process of completing 

execution from instruction commit, since instructions may finish execution 

considerably before they are ready to commit. Adding this commit phase to the 

instruction execution sequence requires an additional set of hardware buffers 

that hold the results of instructions that have finished 
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 The key difference is that in Tomasulo's algorithm, once an instruction writes its 

result, any subsequently issued instructions will find the result in the register 

file. 

 With speculation, the register file is not updated until the instruction commits (and 

we know definitively that the instruction should execute); thus, the ROB supplies 

operands in the interval between completion of instruction execution and 

instruction commit. 

Each entry in the ROB contains four fields: 

 Instruction type 

o The instruction type field indicates whether the instruction is a branch (and 

has no destination result), a store (which has a memory address 

Here are the four steps involved in instruction execution: 

1. Issue—Get an instruction from the instruction queue. Issue the instruction if there 

is an empty reservation station and an empty slot in the ROB; send the operands to 

the reservation station if they are available in either the registers or the ROB. 

Update the control entries to indicate the buffers are in use. The number of the 

ROB entry allocated for the result is also sent to the reservation station, so that the 

number can be used to tag the result when it is placed on the CDB. If either all 

reservations are full or the ROB is full, then instruction issue is stalled until both have 

available entries. 

2. Execute—If one or more of the operands is not yet available, monitor the CDB 

while waiting for the register to be computed. This step checks for RAW hazards. 
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destination), or a register operation (ALU operation or load, which has 

register destinations). 

 Destination field 

o The destination field supplies the register number (for loads and ALU 

operations) or the memory address (for stores) where the instruction 

result should be written. 

 Value field 

o The value field is used to hold the value of the instruction result until the 

instruction commits. 

 Ready field. 

o The ready field indicates that the instruction has completed execution, 

and the value is ready. 
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Figure: The basic structure of a MIPS floating-point unit using Tomasulo’s 

algorithm. 

3. Write result—When the result is available, write it on the CDB (with the ROB 

When both operands are available at a reservation station, execute the operation. 

Instructions may take multiple clock cycles in this stage, and loads still require two 

steps in this stage. Stores need only have the base register available at this step, 

since execution for a store at this point is only effective address calculation. 

 

 
 
 

 
tag sent when the instruction issued) and from the CDB into the ROB, as well as to 

any reservation stations waiting for this result. Mark the reservation station as 

available. Special actions are required for store instructions. If the value to be stored 

is available, it is written into the Value field of the ROB entry for the store. If the value 

to be stored is not available yet, the CDB must be monitored until that value is 

broadcast, at which time the Value field of the ROB entry of the store is updated. 

For simplicity we assume that this occurs during the Write Results stage of a store; 

we discuss relaxing this requirement later. 

4. Commit—this is the final stage of completing an instruction, after which only its 

result remains. (Some processors call this commit phase "completion" or 
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"graduation.") There are three different sequences of actions at commit 

depending on whether the committing instruction is a branch with an incorrect 

prediction, a store, or any other instruction (normal commit). 

 The normal commit case occurs when an instruction reaches the head 

of the ROB and its result is present in the buffer; at this point, the 

processor updates the register with the result and removes the 

instruction from the ROB. 

 When a branch with incorrect prediction reaches the head of the ROB, 

it indicates that the speculation was wrong. The ROB is flushed and 

execution is restarted at the correct successor of the branch. If the 

branch was correctly predicted, the branch is finished. 

for (i = 1000; i>0; i =i-1) 

x[i] = x[i] + s; 

We can see that this loop is parallel by noticing that the body of each iteration is 

independent. First, let's look at the performance of this loop, showing how we can 

use the parallelism to improve its performance for a MIPS pipeline with the latencies 

shown above. 
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Instruction producing result 

clock cycles 

Instruction using result Latency in 

FP ALU op Another FP ALU op 3   

FP ALU op Store double 2   

Load double FP ALU op 1   

 

 

3. i)Describe the basic compiler techniques for exploiting Instruction Level 

Parallelism (ILP). [Apr/ May 2015], [Nov/ Dec 2014], [May/Jun 2013], [May/Jun 

2014] 

Basic Pipeline Scheduling and Loop Unrolling 

 To keep a pipeline full, parallelism among instructions must be exploited by 

finding sequences of unrelated instructions that can be overlapped in the 

pipeline. 

 To avoid a pipeline stall, a dependent instruction must be separated from the 

source instruction by a distance in clock cycles equal to the pipeline latency 

of that source instruction. 

 Consider the following code segment, which adds a scalar to a vector: 
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Load double Store double 0 

The first step is to translate the above segment to MIPS assembly language. In the 

following code segment, Rl is initially the address of the element in the array with 

the highest address, and F2 contains the scalar value s. Register R2 is precompiled, 

so that 8(R2) is the address of the last element to operate on. The straightforward 

MIPS code, not scheduled for the pipeline, looks like this: 

Loop: L.D FO, O(R1) ;F0=array 

element 

ADD.D F4, F0, F2 ; add scalar in F2 

S.D F4,0(R1)  ;store result 

DADDUI Rl,Rl,#-8 ;decrement pointer 

 

also be used to improve scheduling. Because it eliminates the branch, it allows 

instructions from different iterations to be scheduled together. 

In this case, we can eliminate the data use stalls by creating additional independent 

instructions within the loop body. If we simply replicated the instructions when we 

unrolled the loop, the resulting use of the same registers could prevent us from 

effectively scheduling the loop. Thus, we will want to use different registers for each 

iteration, increasing the required number of registers. 

 
The gain from scheduling on the unrolled loop is even larger than on the original 

loop. This increase arises because unrolling the loop exposes more computation 

that can be scheduled to minimize the stalls; the code above has no stalls. 
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This code requires 10 clock cycles per iteration. We can schedule the loop to 

obtain only one stall: 

Loop: L.D F0,0(R1) 

DADDUI R1,R1,#-8 

ADD.D F4,F0,F2 

stall 

BNE R1,R2,Loop ; delayed branch 

S.D F4,8(R1) ; altered & interchanged with DADDUI 

Scheduling the loop in this fashion necessitates realizing that the loads and stores 

are independent and can be interchanged. 

Without any scheduling the loop will execute as follows: 

Clock cycle issued 
 

Loop: L.D F0,0(R1) 1 

stall   2 

 ADD.D F4,F0,F2 3  

stall  4  

stall  5  

 S.D F4,0(R1) 

DADDUI R1,R1,#-8 

 

7 

6 

stall  8  

 BNE R1,R2,Loop 9  

stall  10  

 
 
 
 
 
 
 
 
 
 
 
 

Execution time has been reduced from 10 clock cycles to 6. The stall after ADD.D 

is for the use by the S.D. 

WITH UNROLLING: 

Loop: L.D F0,0(R1) 

L.D F6,-8(R1) 

L.D F10,-16(R1) 

L.D F14,-24(R1) 

ADD.D F4,F0,F2 

ADD.D F8,F6,F2 

ADD.D F12,F10,F2 

ADD.D F16,F14,F2 
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S.D F4,0(R1) 

S.D F8,-8(R1) 

DADDUI R1,R1,#-32 

S.D F12,16(R1) 

BNE R1,R2,Loop 

S.D F16,8(R1) ;8-32 = -24 

 
 

ii) Explain the various dynamic branch prediction schemes. [Nov/ Dec 2014], 

[May/Jun 2013] 

Dynamic Branch Prediction and Branch-Prediction Buffers 

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
than once, when it is not taken, since the misprediction causes the prediction bit to 

be flipped. 

To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit 

scheme, a prediction must miss twice before it is changed. Figure shows the finite-

state processor for a 2-bit prediction scheme. 

A branch-prediction buffer can be implemented as a small, special "cache" accessed 

with the instruction address during the IF pipe stage, or as a pair of bits attached to 

each block in the instruction cache and fetched with the instruction. If the instruction 

is decoded as a branch and if the branch is predicted as taken, fetching begins 

from the target as soon as the PC is known. Otherwise, 
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branch history table. A branch-prediction buffer is a small memory indexed by 

the lower portion of the address of the branch instruction. The memory contains a 

bit that says whether the branch was recently taken or not. This scheme is the 

simplest sort of buffer; it has no tags and is useful only to reduce the branch delay 

when it is longer than the time to compute the possible target PCs. With such a 

buffer, we don't know, in fact, if the prediction is correct—it may have been put there 

by another branch that has the same low-order address bits. 

 But this doesn't matter. The prediction is a hint that is assumed to be correct, 

and fetching begins in the predicted direction. If the hint turns out to be 

wrong, the prediction bit is inverted and stored back. 

This simple 1-bit prediction scheme ---- has a performance shortcoming: Even if 

a branch is almost always taken, we will likely predict incorrectly twice, rather 
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sequential fetching and executing continue., if the prediction turns out to be 

wrong, the prediction bits are changed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

if (aa!=bb) { 
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Correlating Branch Predictors 

The 2-bit predictor schemes use only the recent behavior of a single branch to 

predict the future behavior of that branch. It may be possible to improve the 

prediction accuracy if we also look at the recent behavior of other branches rather 

than just the branch we are trying to predict. Consider a small code fragment from 

the eqntott benchmark, a member of early SPEC benchmark suites that displayed 

particularly bad branch prediction behavior: 

if (aa==2) 

aa=0; 

if (bb==2) 

bb=0; 
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 Branch predictors that use the behavior of other branches to make a 

prediction are called correlating predictors or two-level predictors. 

 Existing correlating predictors add information about the behavior of the most 

recent branches to decide how to predict a given branch. For example, a 

(1,2) predictor uses the behavior of the last branch to choose from among a 

pair of 2-bit branch predictors in predicting a particular branch. In the general 

case an (m,n) predictor uses the behavior of the last m branches to choose 

from 2m branch predictors, each of which is an n-bit predictor for a single 

branch. The attraction of this type of correlating branch predictor is that it 

can yield higher prediction rates than the 2-bit scheme and requires only a 

trivial amount of additional hardware. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
Tournament Predictors: Adaptively Combining Local and Global Predictors 

The primary motivation for correlating branch predictors came from the 

observation that the standard 2-bit predictor using only local information failed on 

some important branches and that, by adding global information, the performance 

could be improved. Tournament predictors take this insight to the next level, by 

using multiple predictors, usually one based on global information and one based 

on local information, and combining them with a selector. 

Tournament predictors can achieve both better accuracy at medium sizes (8K- 32K 

bits) and also make use of very large numbers of prediction bits effectively. Existing 

tournament predictors use a 2-bit saturating counter per branch to 

 
 

43 

http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

choose among two different predictors based on which predictor (local, global, or 

even some mix) was most effective in recent predictions. 

As in a simple 2-bit predictor, the saturating counter requires two mispredictions 

before changing the identity of the preferred predictor. The advantage of a 

tournament predictor is its ability to select the right predictor for a particular branch, 

which is particularly crucial for the integer benchmarks. A typical tournament 

predictor will select the global predictor almost 40% of the time for the SPEC integer 

benchmarks and less than 15% of the time for the SPEC FP benchmarks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The above figure looks at the performance of three different predictors (a local 2- 

bit predictor, a correlating predictor, and a tournament predictor) for different 

numbers of bits using SPEC89 as the benchmark. As we saw earlier, the 

prediction capability of the local predictor does not improve beyond a certain size. 

The correlating predictor shows a significant improvement, and the tournament 

predictor generates slightly better performance. For more recent versions of the 

SPEC, the results would be similar, but the asymptotic behavior would not be 

reached until slightly larger-sized predictors. 
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4. What is Dynamic Scheduling? Explain how it is used to reduce data 

hazards. Also explain dynamic scheduling using Tomosulo’s approach with 

an example. [Nov/ Dec 2013] 

Dynamic scheduling 

 A major limitation of simple pipelining techniques is that they use in-order 

instruction issue and execution: Instructions are issued in program order, and if 

an instruction is stalled in the pipeline, no later instructions can proceed. 

 Thus, if there is dependence between two closely spaced instructions in the 

pipeline, this will lead to a hazard and a stall will result. If there are multiple 

functional units, these units could lie idle. If instruction j depends on a long- 

running instruction i, currently in execution in the pipeline, then all instructions 

 
from ID knowing that all data hazards had been resolved. 

 To allow us to begin executing the SUB. D in the above example, we must 

separate the issue process into two parts: checking for any structural hazards 

and waiting for the absence of a data hazard. Thus, we still use in-order 

instruction issue (i.e., instructions issued in program order), but we want an 

instruction to begin execution as soon as its data operands are available. 

Such a pipeline does out-of-order execution, which implies out-of-order 

completion. 

Out-of-order execution introduces the possibility of WAR and WAW hazards, which 

do not exist in the five-stage integer pipeline and its logical extension to an 
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after j must be stalled until i is finished and 7 can execute. 

For example, consider this code: 

DIV.D F0,F2,F4 

ADD.D F10,F0,F8 

SUB.D F12,F8,F14 

 The SUB.D instruction cannot execute because the dependence of ADD.D on 

DIV.D causes the pipeline to stall; yet SUB. D is not data dependent on anything 

in the pipeline. 

 This hazard creates a performance limitation that can be eliminated by not 

requiring instructions to execute in program order. In the classic five-stage 

pipeline, both structural and data hazards could be checked during instruction 

decode (ID): When an instruction could execute without hazards, it was issued 
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in-order floating-point pipeline. Consider the following MIPS floating-point code 

sequence: 

DIV.D F0,F2,F4 

ADD.D F6,F0,F8 

SUB.D F8,F10,F14 

MUL.D F6,F10,F8 

 There is antidependence between the ADD. D and the SUB.D, and if the pipeline 

executes the SUB. D before the ADD. D (which is waiting for the DIV. D), it will 

violate the antidependence, yielding a WAR hazard. Likewise, to avoid violating 

output dependences, such as the write of F6 by MUL.D, WAW hazards must be 

handled. As we will see, both these hazards are avoided by 

as if the instructions were executed sequentially in strict program order. 

Imprecise exceptions can occur because of two possibilities: 

1. The pipeline may have already completed instructions that are later in pro-

gram order than the instruction causing the exception. 

2. The pipeline may have not yet completed some instructions that are earlier 

in program order than the instruction causing the exception. Imprecise 

exceptions make it difficult to restart execution after an exception. Rather 

than address these problems in this section, we will discuss a solution that 

provides precise exceptions in the context of a processor with speculation To 

allow out-of-order execution, we essentially split the ID pipe stage of our 

simple five-stage pipeline into two stages: 
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the use of register renaming. 

 Out-of-order completion also creates major complications in handling 

exceptions. Dynamic scheduling with out-of-order completion must preserve 

exception behavior in the sense that exactly those exceptions that would arise if 

the program were executed in strict program order actually do arise. 

 Dynamically scheduled processors preserve exception behavior by ensuring 

that no instruction can generate an exception until the processor knows that the 

instruction raising the exception will be executed; we will see shortly how this 

property can be guaranteed. 

 Although exception behavior must be preserved, dynamically scheduled 

processors may generate imprecise exceptions. An exception is imprecise 

if the processor state when an exception is raised does not look exactly 
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 Issue—Decode instructions, check for structural hazards. 

 Read operands—Wait until no data hazards, then read 

operands. 

We distinguish when an instruction begins execution and when it completes 

execution; between the two times, the instruction is in execution. Our pipeline 

allows multiple instructions to be in execution at the same time, and without this 

capability, a major advantage of dynamic scheduling is lost. Having multiple 

instructions in execution at once requires multiple functional units, pipelined 

functional units, or both. 

In a dynamically scheduled pipeline, all instructions pass through the issue stage in 

order (in-order issue); however, they can be stalled or bypass each other in the 

 
WAR and WAW hazard:  

DIV.D F0.F2.F4 

ADD.D F6,F0,F8 

S.D F6,0(R1) 

SUB.D F8,F10,F14 

MUL.D F6,F10,F8 

There is antidependence between the ADD.D and the SUB.D and an output 

dependence between the ADD.D and the MilL.D, leading to two possible hazards: 

a WAR hazard on the use of F8 by ADD. D and a WAW hazard since the ADD. D 

may finish later than the MUL.D. There are also three true data dependences: 

 

47 

second stage (read operands) and thus enter execution out of order. 

Dynamic Scheduling using Tomosulo’s approach 

 RAW hazards are avoided by executing an instruction only when its 

operands are available. 

 WAR and WAW hazards, which arise from name dependences, are 

eliminated by register renaming. Register renaming eliminates these 

hazards by renaming all destination registers, including those with a 

pending read or write for an earlier instruction, so that the out-of-order 

write does not affect any instructions that depend on an earlier value of an 

operand. 

To better understand how register renaming eliminates WAR and WAW hazards; 

consider the following example code sequence that includes both a potential 
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between the DIV.D and the ADD.D, between the SUB.D and the MUL.D, and 

between the ADD.D and the S.D. 

These two name dependences can both be eliminated by register renaming. For 

simplicity, assume the existence of two temporary registers, S and T. Using S and 

T, the sequence can be rewritten without any dependences as 

DIV.D F0,F2,F4 

ADD.D S,F0,F8 

S.D S,0(R1) 

SUB.D T.F10.F14 

MUL.D F6,F10,T 

 In addition, any subsequent uses of F8 must be replaced by the register T. In 
 

renamed to the names of the reservation station, which provides register 

renaming. 

 Since there can be more reservation stations than real registers, the technique 

can even eliminate hazards arising from name dependences that could not be 

eliminated by a compiler. 

USE OF RESERVATION STATIONS: 

 The use of reservation stations, rather than a centralized register file, leads to 

two other important properties. First, hazard detection and execution control are 

distributed: The information held in the reservation stations at each functional 

unit determine when an instruction can begin execution at that unit. 
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this code segment, the renaming process can be done statically by the compiler. 

Finding any uses of F8 that are later in the code requires either sophisticated 

compiler analysis or hardware support, since there may be intervening branches 

between the above code segment and a later use of F8. 

 In Tomasulo's scheme, register renaming is provided by reservation stations 

which buffer the operands of instructions waiting to issue. The basic idea is that 

a reservation station fetches and buffers an operand as soon as it is available, 

eliminating the need to get the operand from a register. 

 In addition, pending instructions designate the reservation station that will 

provide their input. Finally, when successive writes to a register overlap in 

execution, only the last one is actually used to update the register. As 

instructions are issued, the register specifiers for pending operands are 
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 Second, results are passed directly to functional units from the reservation 

stations where they are buffered, rather than going through the registers. This 

bypassing is done with a common result bus that allows all units waiting for an 

operand to be loaded simultaneously (on the 360/91 this is called the common 

data bus, or CDB). In pipelines with multiple execution units and issuing multiple 

instructions per clock, more than one result bus will be needed. 

The basic structure of a Tomasulo-based processor, including both the floating- 

point unit and the load-store unit; none of the execution control tables are shown. 

 
 
 
 

 

instruction, if they have already been computed, or else the names of the 

reservation stations that will provide the operand values. 

 The load buffers and store buffers hold data or addresses coming from and going 

to memory and behave almost exactly like reservation stations, so we distinguish 

them only when necessary. The floating-point registers are connected by a pair 

of buses to the functional units and by a single bus to the store buffers. 

RESERVATION STATION COMPONENTS: 

 Op: operation to perform in the unit (e.g., + or –) 

 Vj, Vk: value of Source operands 
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COMPONENTS OF TOMOSULO’S ARCHITECTURE: 

RESERVATION STATION: 

 Each reservation station holds an instruction that has been issued and is 

awaiting execution at a functional unit, and either the operand values for that 
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o Store buffers has V field, result to be stored 

 Qj, Qk: reservation stations producing source registers (value to be written) 

o Note: Qj,Qk=0 => ready 

o Store buffers only have Qi for RS producing result 

 Busy: indicates reservation station or FU is busy 

 Register result status: Indicates which functional unit will write each register, if 

one exists. Blank when no pending instructions that will write that register. 

 
Steps an involved in tomosulo algorithm. There are only three steps, although 

each one can now take an arbitrary number of clock cycles: 

 Issue—Get the next instruction from the head of the instruction queue, which 
 

corresponding functional unit. By delaying instruction execution until the 

operands are available, RAW hazards are avoided. (Some dynamically 

scheduled processors call this step "issue," but we use the name "execute," 

which was used in the first dynamically scheduled processor, the CDC 6600.) 

o Loads and stores require a two-step execution process. The first step 

computes the effective address when the base register is available, and 

the effective address is then placed in the load or store buffer. Loads in 

the load buffer execute as soon as the memory unit is available. Stores in 

the store buffer wait for the value to be stored before being sent to the 

memory unit. 
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is maintained in FIFO order to ensure the maintenance of correct data flow. If 

there is a matching reservation station that is empty, issue the instruction to the 

station with the operand values, if they are currently in the registers. If there is 

not an empty reservation station, then there is a structural hazard and the 

instruction stalls until a station or buffer is freed. If the operands are not in the 

registers, keep track of the functional units that will produce the operands. This 

step renames registers, eliminating WAR and WAW hazards. (This stage is 

sometimes called dispatch in a dynamically scheduled processor.) 

 Execute—If one or more of the operands is not yet available, monitor the 

common data bus while waiting for it to be computed. When an operand 

becomes available, it is placed into any reservation station awaiting it. When 

all the operands are available, the  operation  can be executed at the 
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5(i) Explain the concept of ILP with various types of dependencies in ILP. 

[Nov/ Dec 2013], [May/Jun 2013] 

Data Dependences and Hazards 

 If two instructions are parallel, they can execute simultaneously in a pipeline 

of arbitrary depth withoutcausing any stalls, assuming the pipeline has 

sufficient resources (and hence no structural hazards exist). If two 

 Write result—When the result is available, write it on the CDB and from there 

into the registers and into any reservation stations (including store buffers) 

waiting for this result. Stores are buffered in the store buffer until both the value 

to be stored and the store address are available, then the result is written as 

soon as the memory unit is free. 

Instruction status: Exec  Write 

Instruction  j k Issue Comp Result  Busy  Address  

LD F6 34+ R2 1 3 4 Load1 No  

LD F2 45+ R3 2 4 5 Load2 No  

MULTD F0 F2 F4 3 15 16 Load3 No  

SUBD F8 F6 F2 4 7 8    

DIVD F10 F0 F6 5 56 57    

ADDD F6 F8 F2 6 10 11    

Reservation Stations: 
  

S1 S2 RS RS 
  

Time Name Busy Op Vj Vk Qj Qk   

Add1 No        

Add2 No        

Add3 No        

Mult1 No        

Mult2 Yes DIVD M*F4 M(A1)     

Register result status: 
 

Clock  F0 F2 F4 F6 F8 F10 F12 ... 
56 FU M*F4 M(A2)  (M-M+M (M-M) Result   

 
 
 
 
 
 
 
 
 

 
instructions are dependent, they are not parallel and must be executed in 

order, although they may often be partially overlapped. The key in both cases 

is to determine whether an instruction is dependent on another instruction. 

Data Dependences 

There are three different types of dependences: 

 Data dependences (also called true data dependences) 

 Name dependences(also called anti dependence) 

 Control dependences. 

An instruction j is data dependent on instruction i if either of the following holds: 
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 Instruction i produces a result that may be used by instruction j. Instruction 

j is data dependent on instruction k, and instruction k is data dependent on 

instruction i 

The second condition simply states that one instruction is dependent on another if 

there exists a chain of dependences of the first type between the two instructions. 

This dependence chain can be as long as the entire program. Note that dependence 

within a single instruction (such as ADDD R1.R1.R1) is not considered dependence. 

 
Loop:  L.D F0,0(R1) 

 

 

one or more data hazards between the two instruction 

Name Dependences 

The second type of dependence is name dependence. Name dependence occurs 

when two instructions use the same register or memory location, called a name, but 

there is no flow of data between the instructions associated with that name. 

There are two types of name dependences between an instruction i that precedes 

instruction j in program order 

 
1. An anti dependence between instruction i and instruction j occurs when 

instruction j writes a register or memory location that instruction i reads. 

The original ordering must be preserved to ensure that i reads the 
52 

ADD.D F4 ,F0,F2 

S.D F4,0(R1) 

Explanation: 

 Both of the above dependent sequences, as shown by the arrows, 

have each instruction depending on the previous one. The arrows here 

and in above examples show the order that must be preserved for 

correct execution. 

 The arrow points from an instruction that must precede the instruction 

that the arrowhead points to. If two instructions are data dependent, 

they cannot execute simultaneously or be completely 

overlapped. The dependence implies that there would be a chain of 
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⚫ Called an “output dependence” by compiler writers. This also results from 

the reuse of name “r1” 

Data Hazards 

A hazard is created whenever there is a dependence between instructions, 

and they are close enough that the overlap during execution would change the order 

of access to the operand involved in the dependence. Because of the dependence, 

we must preserve what is called program order, that is, the order that the 

instructions would execute in if executed sequentially one at a time as determined 

by the original source program. The goal of both our software and hardware 

techniques is to exploit parallelism by preserving program order only where it affects 

the out-come of the program. Detecting and avoiding hazards ensures that 

necessary program order is preserved. 

correct value. In the example on page 69, there is an anti dependence 

between S. D and DADDIU on register Rl. 

2. An output dependence occurs when instruction i and instruction j write the 

same register or memory location. The ordering between the instructions 

must be preserved to ensure that the value finally written corresponds to 

instruction j. 

Example: 

⚫ InstrJ writes operand beforeInstrIwrites it. 

I: sub r1,r4,r3 

J: add r1,r2,r3 

K: mul r6,r1,r7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RAW (read after write) —j tries to read a source before i writes it, so j incorrectly 

gets the old value. This hazard is the most common type and corresponds to a 

true data dependence. Program order must be preserved to ensure that j receives 

the value from i. 

WAW (write after write) —j tries to write an operand before it is written by i. The 

writes end up being performed in the wrong order, leaving the value written by i 

rather than the value written by j in the destination. This hazard corresponds to an 

output dependence. WAW hazards are present only in pipelines that write in more 

than one pipe stage or allow an instruction to proceed even when a previous 

instruction is stalled. 

 

 
53 

http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

WAR (write after read)—j tries to write a destination before it is read by i, so i 

incorrectly gets the new value. This hazard arises from an anti dependence. 

WAR hazards cannot occur in most static issue pipelines—even deeper pipelines 

or floating-point pipelines—because all reads are early (in ID) and all writes are 

late (in WB). 

Example: for WAR Hazard: Floating-point data part 

Loop: L.D  F0, 0(R1) ;F0=array element 

ADD.D F4, F0, F2 ;add scalar in F2 

S.D F4, 0(R1) ;store result 

Integer data part 

DADDUI R1, R1, #-8 ;decrement pointer 
 

if P2 { 

S2; 

} 

S1 is control dependent on p1, and S2 is control dependent on p2 but not on p1. In 

general, there are two constraints imposed by control dependences: 

1. An instruction that is control dependent on a branch cannot be moved before the 

branch so that its execution is no longer controlled by the branch. For example, we 

cannot take an instruction from the then portion of an if statement and move it before 

the if statement. 
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BNE R1, R2, Loop 

;8 bytes (per DW) 

;branch R1!=R2 

Control Dependences 

A control dependence determines the ordering of an instruction, i, with 

respect to a branch instruction so that the instruction i is executed in correct program 

order and only when it should be. Every instruction, except for those in the first basic 

block of the program, is control dependent on some set of branches, and, in 

general, these control dependences must be preserved to preserve program order. 

if P1 { 

S1; 

}; 
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2. An instruction that is not control dependent on a branch cannot be moved after 

the branch so that its execution is controlled by the branch. For example, we cannot 

take a statement before the if statement and move it into the then portion. 

 
(ii) Briefly discuss the limitations of ILP also discuss the techniques to 

overcome these limitations.[Nov/ Dec 2014], [Nov/ Dec 2013] 

Limits to ILP 

 Conflicting studies of amount of ILP 

 Benchmarks - vectorized Fortran FP vs. integer C programs 

 Hardware sophistication 

 Compiler sophistication 
 

overcome these limits in near future 
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  How much ILP is available using existing mechanisms with increasing HW 

budgets? 

  Do we need to invent new HW/SW mechanisms to keep on processor 

performance curve? 

 Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints 

 Intel SSE2: 128 bit, including 2 64-bit FP per clock 

 Motorola AltiVec: 128 bit ints and FPs 

 Supersparc Multimedia ops, etc. 

Overcoming Limits 

 Advances in compiler technology and different hardware techniques may 

be able to overcome limitations assumed in studies 

 However, unlikely such advances when coupled with realistic hardware will 
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UNIT III 

DATA LEVEL PARALLELISM 

PART A 

1. Define SIMD.?[May/June 2014] 

Single instruction issue, single operation, but multiple data sets per operation. It 

describes computers with multiple processing elements that perform the same 

operation on multiple data points simultaneously. 

 
2. What do you mean by Loop level parallelism? ?[May/June 2015] 

The simplest and most common way to increase the ILP is to exploit parallelism 

among iterations of a loop. This type of parallelism is often called loop-level 

 

5. Compare multi vector and SIMD computers. [R-2013](Apr/may 2017) 
 

Multi vector SIMD 

It processes multiple word at a time 

through pipelined Processors 

It consists multiple processing elements that 

perform the same operation on multiple data 

points simultaneously 

Process in concurrent It exploits data level 

not concurrency 

parallelism, but 

Multimedia instructions being added 

to many processors 

Used to improve the 

multimedia applications 

performance of 
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Parallelism 

What is the need to detect loop dependencies? How does the compiler 

detect it? [R-2013] 

 To support loop unrolling, the compiler must detect any dependencies that 

exist both within and between loop iterations 

 Different compilers may use different loop dependency test like GCD test, 

Banerjee test to detect loop dependencies. 

4. What is vector processing? [R-2013] 

Vector Processing: Explicit coding of independent loops as operations on large 

vectors of numbers 

– Multimedia instructions being added to many processors 

https://en.wikipedia.org/wiki/Multiple_processing_elements
https://en.wikipedia.org/wiki/Multiple_processing_elements
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Data_parallelism
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

6. Name some SIMD languages. [R-2013] 

 HLSL 

 Cg, 

 GLSL 

 OpenCL 



7. Compare CPU and GPU. [R-2013](NOV/DEC 2016) 

GPU 

 Same operations on many primitives (SIMD) 

 Focus on throughput over latency 

 Lots of special purpose hardware 
 

GPU Limitations 

 Relatively small amount of memory, less than 4GB in current GPUs 

 I/O directly to GPU memory has complications – It Must transfer to host 

memory, and then back 

 
10. What is Chaining? [R-2013] 

Chaining allows a vector operation to start as soon as the individual elements of its 

vector source operand become available. 

 
11. Mention the Advantages of SIMD over vector architecture. Apr/may 2017) 

 Cost little to add to the standard ALU and easy to implement 
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CPU 

 Focus on reducing Latency 

 Designed to handle a wider range of problems 

What are advantages and disadvantages of GPUs? [R-2013] 

Advantages 

 Supercomputer-like FP performance on commodity processors 

Disadvantages 

 Performance tuning difficult 

 Large speed gap between compiler-generated and hand-tuned code. 

9. Mention the limitations of GPUs. ?[Nov/Dec 2014] 
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 Require little extra state  easy for context-switch 

 Require little extra memory bandwidth 

 No virtual memory problem of cross-page access and page-fault 

 

12. What are the Disadvantage of Vector Processor? [R-2013] 

 limited to regular data and control structures 

 Vector Registers and buffers 

 memory BW 

 

13. Why vector processors popular in scientific calculations? [R-2013] 

A computer designed to apply arithmetic operations to long vectors or arrays. Most 
 

 CUDA kernel to be executed on GPU 

 CUDA kernel to be executed on GPU 

 

16. What are the primary components of instruction set architecture of 

VMIPS ? (NOV/DEC 2016) 

 Vector registers 

 Vector fuctional unit 

 Vector load/store unit 

 Set a scalar registers. 
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vector processors rely heavily on pipelining to achieve high performance. 

14. What is a vector? [R-2013] 

Vectorisan ordered list of items in a computer's memory. A simple vector is defined 

as having a starting address, a length, and a stride. An indirect address vector is 

defined as having a relative base address and a vector of values to be applied as 

indices to the base. 

How does the compiler now which code to compile for CPU and which 

one for GPU? 

[R-2013] 

 Specifier tells compiler where function will be executed 

 Executed on CPU, called form CPU 
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There is dependence between successive uses of i in different iterations, which is 

loop-carried, but this dependence involves an induction variable and can be easily 

recognized and eliminated. 

EXAMPLE Consider a loop like this one: 

for (i=1; i<=100; i=i+1) { 

A[i+1] = A[i] + C[i]; /* S1 */ 

B[i+1] = B[i] + A[i+1]; /* S2 */ 

} 

Assume that A, B, and C are distinct, non-overlapping arrays. (In practice, the arrays 

may sometimes be the same or may overlap. Because the arrays may be passed 

as parameters to a procedure, which includes this loop, determining whether arrays 

overlap or are identical often requires sophisticated, inter- 

PART B 

1. Explain how do you detect and enhance Loop Level Parallelism? [R-2013] 

Loop Carried Dependence: 

The analysis of loop-level parallelism focuses on determining whether data 

accesses in later iterations are dependent on data values produced in earlier 

iterations, such dependence is called a loop-carried dependence. 

To see that a loop is parallel, let us first look at the source representation: 

for (i=1000; i>0; i=i–1) 

x[i] = x[i] + s; 

In this loop, there is dependence between the two uses of x[i], but this 

dependence is within a single iteration and is not loop-carried. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

procedural analysis of the program.) 

What are the data dependences among the statements S1 and S2 in the loop? 

There are two different dependences: 

1. S1 uses a value computed by S1 in an earlier iteration, since iteration i computes 

A[i+1], which is read in iteration i+1. The same is true of S2 for B[i] and B[i+1]. 

2. S2 uses the value, A[i+1], computed by S1 in the same iteration. 

These two dependences are different and have different effects. To see how 

they differ, let’s assume that only one of these dependences exists at a time. 

Because the dependence of statement S1 on an earlier iteration of S1, this 
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Two observations are critical to this transformation: 

1. There is no dependence from S1 to S2. If there were, then there would be a cycle 

in the dependences and the loop would not be parallel. Since this other dependence 

is absent, interchanging the two statements will not affect the execution of S2. 

2. On the first iteration of the loop, statement S1 depends on the value of B[1] 

computed prior to initiating the loop. 

These two observations allow us to replace the loop above with the following code 

sequence: 

A[1] = A[1] + B[1]; 

for (i=1; i<=99; i=i+1) { 

B[i+1] = C[i] + D[i]; 

dependence is loop-carried. This dependence forces successive iterations of this 

loop to execute in series. 

The second dependence above (S2 depending on S1) is within an it-21eration and 

is not loop-carried. Thus, if this were the only dependence, multiple iterations of the 

loop could execute in parallel, as long as each pair of statements in iteration were 

kept in order. 

Consider a loop like this one: 

for (i=1; i<=100; i=i+1) { 

A[i] = A[i] + B[i]; /* S1 */ 

B[i+1] = C[i] + D[i]; /* S2 */ 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A[i+1] = A[i+1] + B[i+1];22 

} 

B[101] = C[100] + D[100]; 

Finding Dependences 

Finding the dependences in a program is an important part of three tasks: 

 good scheduling of code, 

 determining which loops might contain parallelism 

 Eliminating name dependences. 

How does the compiler detect dependences in general? Nearly all dependence 

analysis algorithms work on the assumption that array indices are affined. In 
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As an example, a simple and sufficient test for the absence of a dependence is the 

greatest common divisor, or GCD, test. It is based on the observation that if a loop-

carried dependence exists, then GCD (c,a) must divide (d – b). (Recall that an 

integer, x, divides another integer, y, if there is no remainder when we do the division 

y/x and get an integer quotient.) 

EXAMPLE Use the GCD test to determine whether dependences exist in the 

following loop: 

for (i=1; i<=100; i=i+1) { 

X[2*i+3] = X[2*i] * 5.0; 

} 

ANSWER Given the values a = 2, b = 3, c = 2, and d = 0, then GCD(a,c) = 2, and 

d – b = –3. Since 2 does not divide –3, no dependence is possible. 

simplest terms, a one-dimensional array index is affine if it can be written in the form 

a × i + b, where ‘a’ and ‘b’ are constants, and i is the loop index variable. 

Dependence exists if two conditions hold: 

1. There are two iteration indices, j and k, both within the limits of the for loop. 

That is m ≤ j ≤ n, m ≤ k ≤ n. 

2. The loop stores into an array element indexed by a × j + b and later fetches 

from that same array element when it is indexed by c × k + d. That is, a × j + 

b = c × k + d.24 

 
 

GCD TEST: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The GCD test is sufficient to guarantee that no dependence exists; however, there 

are cases where the GCD test succeeds but no dependence exists. This can arise, 

for example, because the GCD test does not take the loop bounds into account. 

Eliminating Dependent Computations: 

Compilers can reduce the impact of dependent computations so as to achieve more 

ILP. The key technique is to eliminate or reduce a dependent computation by back 

substitution, which increases the amount of parallelism and sometimes increases 

the amount of computation required. 
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possible that we may want to increase the parallelism of the code, possibly even 

increasing the number of operations. Such optimizations are called tree height 

reduction, since they reduce the height of the tree structure representing a 

computation, making it wider but shorter. Consider the following code sequence: 

ADD R1,R2,R3 

ADD R4,R1,R6 

ADD R8,R4,R7 

Notice that this sequence requires at least three execution cycles, since all the 

instructions depend on the immediate predecessor. By taking advantage of 

associativity, we can transform the code and rewrite it as: 

ADD R1,R2,R3 

ADD R4,R6,R7 

Within a basic block, algebraic simplifications of expressions and an optimization 

called copy propagation, which eliminates operations that copy values, can be 

used to simplify sequences like the following: 

DADDUI R1,R2,#4 

DADDUI R1,R1,#4 

to: 

DADDUI R1,R2,#8 

assuming this is the only use of R1. In fact, the techniques we used to reduce 

multiple increments of array indices during loop unrolling and to move the 

increments across memory addresses. 

In these examples, computations are actually eliminated, but it also 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ADD R8,R1,R4 

This sequence can be computed in two execution cycles. When loop unrolling is 

used, opportunities for these types of optimizations occur frequently. 

Software Pipelining: Symbolic Loop Unrolling 

There are two other important techniques that have been developed for this 

purpose: software pipelining and trace scheduling. 

Software pipelining is a technique for reorganizing loops such that each 

iteration in the software-pipelined code is made from instructions chosen 

from different iterations of the original loop. This approach is most easily 

understood by looking at the scheduled code for the superscalar version of MIPS, 

which appeared in Figure. 
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The scheduler in this example essentially interleaves instructions from different loop 

iterations, so as to separate the dependent instructions that occur within single loop 

iteration. By choosing instructions from different iterations, dependent computations 

are separated from one another by an entire loop body, increasing the possibility 

that the unrolled loop can be scheduled without stalls. 

Show a software-pipelined version of this loop, which increments all the elements of 

an array whose starting address is in R1 by the contents of F2: 

Loop: L.D F0, 0(R1) 

ADD.D F4, F0, F2 

S.D F4, 0(R1) 

DADDUI R1, R1,#-8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iteration i+2: L.D F0,0(R1) 

ADD.D F4,F0,F2 

S.D F4,0(R1) 

The selected instructions from different iterations are then put together in the loop 

with the loop control instructions: 

Loop: S.D F4,16(R1) ;stores into M[i] 

ADD.D F4,F0,F2 ;adds to M[i-1] 

L.D F0,0(R1) ;loads M[i-2] 

DADDUI R1,R1,#-8 

BNE R1,R2,Loop 
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BNE R1, R2, Loop 

Software pipelining symbolically unrolls the loop and then selects instructions from 

each iteration. Since the unrolling is symbolic, the loop overhead instructions (the 

DADDUI and BNE) need not be replicated. Here’s the body of the unrolled loop 

without overhead instructions, highlighting the instructions taken from each iteration: 

Iteration i: L.D F0,0(R1) 

ADD.D F4,F0,F2 

S.D F4,0(R1) 

Iteration i+1: L.D F0,0(R1) 

ADD.D F4,F0,F2 

S.D 0(R1),F4 
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Global Code Scheduling 

 In general, effective scheduling of a loop body with internal control flow 

will require moving instructions across branches, which is global code 

scheduling. In this section, we first examine the challenge and 

limitations of global code scheduling. 

 Global code scheduling aims to compact a code fragment with internal control 

structure into the shortest possible sequence that preserves the 

This loop can be run at a rate of 5 cycles per result, ignoring the start-up and clean-

up portions, and assuming that DADDUI is scheduled after the ADD.D and the L.D 

instruction, with an adjusted offset, is placed in the branch delay slot. Because the 

load and store are separated by offsets of 16 (two iterations), the loop should run 

for two fewer iterations. 

 

 
 
 
 
 
 
 
 
 
 
 

data and control dependences. The data dependences force a partial order 

on operations, while the control dependences dictate instructions across 

which code cannot be easily moved. 

 Finding the shortest possible sequence for a piece of code means finding 

the shortest sequence for the critical path, this is the longest sequence of 

dependent instructions. 

 Control dependences arising from loop branches are reduced by unrolling. 
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Global code scheduling can reduce the effect of control dependences arising from 

 

 
 

LD R4,0(R1) ; load A 

LD R5,0(R2) ; load B 

DADDU R4,R4,R5 ; Add to A 

SD 0(R1),R4 ; Store A 

... 

BNEZ R4,elsepart ; Test A 

... ; then part 

SD 0(R2),... ; Stores to B 

J join ; jump over else 

elsepart:... ; else part 
65 

conditional non-loop branches by moving code. Since moving code across branches 

will often affect the frequency of execution of such code, effectively using global 

code motion requires estimates of the relative frequency of different paths. 

Effectively scheduling this code could require that we move the assignments to B 

and C to earlier in the execution sequence, before the test of A. Such global code 

motion must satisfy a set of constraints to be legal. In addition, the movement of the 

code associated with B, unlike that associated with C, is speculative: 

To perform the movement of B, we must ensure that neither the data flow nor the 

exception behavior is changed. Compilers avoid changing the exception behavior 

by not moving certain classes of instructions, such as memory references, that can 

cause exceptions. 
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X ; code for X 

... 

join: ... ; after if 

SD 0(R3),... ; store C[i] 

 
 

Trace Scheduling: Focusing on the Critical Path 

Trace scheduling is useful for processors with a large number of issues per 

clock, where conditional or predicated execution is inappropriate or unsupported, 

and where simple loop unrolling may not be sufficient by itself to uncover enough 

ILP to keep the processor busy. Trace scheduling is a way to organize the global 

code motion process, so as to simplify the code scheduling by 

instructions. Trace compaction is code scheduling; hence, it attempts 

to move operations as early as it can in a sequence (trace), packing 

the operations into as few wide instructions (or issue packets) as 

possible. 

Advantage of Trace Scheduling: 

The advantage of the trace scheduling approach is that it simplifies the 

decisions concerning global code motion. In particular, branches are viewed as 

jumps into or out of the selected trace, which is assumed to the most probable path. 
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incurring the costs of possible code motion on the less frequent paths. 

There are two steps to trace scheduling. 

 The first step, called trace selection, tries to find a likely sequence of 

basic blocks whose operations will be put together into a smaller 

number of instructions; this sequence is called a trace. Loop unrolling 

is used to generate long traces, since loop branches are taken with 

high probability. Additionally, by using static branch prediction, other 

conditional branches are also chosen as taken or not taken, so that 

the resultant trace is a straight-line sequence resulting from 

concatenating many basic blocks. 

 Once a trace is selected, the second process, called trace compaction, 

tries to squeeze the trace into a small number of wide 
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2. Explain in detail about how SIMD extensions exploit data-level parallelism. 

[R-2013] 

SIMD Extensions 

 Media applications operate on data types narrower than the native 

word size 

 Example: disconnect carry chains to “partition” adder 

 Limitations, compared to vector instructions: 

 Number of data operands encoded into op code 

 No sophisticated addressing modes (strided, scatter-gather) 

 No mask registers 

SIMD Implementations 
 

 -switch 

 Require little extra memory bandwidth 

 No virtual memory problem of cross-page access and page-fault 

 
 

Example SIMD Code 

 Example DXPY: 

 

L.DF0,a;load scalar a 

MOVF1, F0;copya into F1 for SIMD MUL 

MOVF2, F0;copya into F2 for SIMD MUL 

MOVF3, F0;copya into F3 for SIMD MUL 
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Intel MMX (1996) 

Eight 8-bit integer ops or four 16-bit integer ops 

Streaming SIMD Extensions (SSE) (1999) 

Eight 16-bit integer ops 

Four 32-bit integer/fpops or two 64-bit integer/fpops 

Advanced Vector Extensions (2010) 

Four 64-bit integer/fpops 

Operands must be consecutive and aligned memory locations 

Generally designed to accelerate carefully written libraries rather than 

for compilers 

Advantages over vector architecture: 

Cost little to add to the standard ALU and easy to implement 
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DADDIUR4,Rx,#512;last address to load 

Loop:L.4D F4,0[Rx];load X[i], X[i+1], X[i+2], X[i+3] 

MUL.4DF4,F4,F0;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3] 

L.4DF8,0[Ry];load Y[i], Y[i+1], Y[i+2], Y[i+3] 

ADD.4DF8,F8,F4;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3] 

S.4DF8,0[Ry] ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] 

DADDIURx,Rx,#32;increment index to X 

DADDIURy,Ry,#32;increment index to Y 

DSUBUR20,R4,Rx;compute bound 

BNEZR20,Loop;check if done 

 
 

 
 
 
 

Examples 

Attainable GFLOPs/sec Min = (Peak Memory BW ×Arithmetic Intensity, 

Peak Floating Point Perf.) 
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Roofline Performance Model 

 Basic idea: 

Plot peak floating-point throughput as a function of arithmetic intensity 

Ties together floating-point performance and memory performance for a 

target machine 

 Arithmetic intensity 

Floating-point operations per byte read 
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3. Explain in detail about Vector Architectures of data-level parallelism . [R- 
 

 Loosely based on Cray-1 

 Vector registers 

 Each register holds a 64-element, 64 bits/element vector 

 Register file has 16 read ports and 8 write ports 

 Vector functional units 

 Fully pipelined 

 Data and control hazards are detected 

 Vector load-store unit 

 Fully pipelined 

 One word per clock cycle after initial latency 
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2013] 



 

 

 



 

 

Vector Architectures 

Basic idea: 

Read sets of data elements into “vector registers” 

Operate on those registers 

Disperse the results back into memory 

Registers are controlled by compiler 

Used to hide memory latency 

Leverage memory bandwidth 

VMIPS 

 Example architecture: VMIPS 
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 Scalar registers 

 32 general-purpose registers 

This processor has a scalar architecture just like MIPS. There are also eight 64- 

element vector registers, and all the functional units are vector functional units. This 

chapter defines special vector instructions for both arithmetic and memory accesses. 

The figure shows vector units for logical and integer operations so that VMIPS looks 

like a standard vector processor that usually includes these units; however, we will 

not be discussing these units. The vector and scalar registers have a significant 

number of read and write ports to allow multiple simultaneous vector operations. A 

set of crossbar switches (thick gray lines) connects these ports to 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. The basic structure of vector architecture, VMIPS. 
 
 

VMIPS Instructions 

 ADDVV.D: add two vectors 
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the inputs and outputs of the vector functional units. 
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 ADDVS.D: add vector to a scalar 

 LV/SV: vector load and vector store from address 

 Example: DAXPY (double precision a*X+Y) 

 

 L.DF0,a; load scalar a 

 LVV1,Rx; load vector X 

 MULVS.DV2,V1,F0; vector-scalar multiply 

 LVV3,Ry; load vector Y 

 ADDVVV4,V2,V3; add 

 SVRy,V4; store the result 

 Requires 6 instructions 
 

BNEZR20,Loop; check if done 

 Requires almost 600 MIPS ops 

Vector Execution Time 

 Execution time depends on three factors: 

 Length of operand vectors 

 Structural hazards 

 Data dependencies 

 VMIPS functional units consume one element per clock cycle 

 Execution time is approximately the vector length 

 Convoy 

 Set of vector instructions that could potentially execute together 
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 DAXPY in MIPS Instructions 

Example: DAXPY (double precision a*X+Y) 

L.DF0,a; load scalar a 

DADDIUR4,Rx,#512; last address to load 

Loop: L.DF2,0(Rx); load X[i] 

MUL.DF2,F2,F0; a x X[i] 

L.DF4,0(Ry); load Y[i] 

ADD.DF4,F2,F2; a x X[i] + Y[i] 

S.DF4,9(Ry); store into Y[i] 

DADDIURx,Rx,#8; increment index to X 

DADDIURy,Ry,#8; increment index to Y 

SUBBUR20,R4,Rx; compute bound 
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Chimes 

 Sequences with read-after-write dependency hazards can be in the 

same convey via chaining 

 Chaining 

Allows a vector operation to start as soon as the individual elements of its 

vector source operand become available 

 Chime 

 Unit of time to execute one convey 

 mconveys executes in mchimes 

 For vector length of n, requires mx nclock cycles 
 

 

For 64 element vectors, requires 64 x 3 = 192 clock cycles 

Challenges 

 Start up time 

 Latency of vector functional unit 

 Assume the same as Cray-1 

 Floating-point add => 6 clock cycles 

 Floating-point multiply => 7 clock cycles 

 Floating-point divide => 20 clock cycles 

 Vector load => 12 clock cycles 

 Optimizations: 

 Multiple Lanes: > 1 element per clock cycle 

72 

 
Example 

LVV1,Rx;load vector X 

MULVS.DV2,V1,F0;vector-scalar multiply 

LVV3,Ry;load vector Y 

ADDVV.DV4,V2,V3;add two vectors 

SVRy,V4;store the sum 

Convoys: 

1LVMULVS.D 

2LVADDVV.D 

3SV 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 
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 Vector Length Registers: Non-64 wide vectors 

 Vector Mask Registers: IF statements in vector code 

 Memory Banks: Memory system optimizations to support vector processors 

 Stride: Multiple dimensional matrices 

 Scatter-Gather: Sparse matrices 

 Programming Vector Architectures: Program structures affecting 

performance 

Multiple Lanes 

 Element n of vector register A is “hardwired” to element n of vector 

register B 

 Allows for multiple hardware lanes 
 

Figure: Element n of vector register A is “hardwired” to element n of vector 

register B 
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VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

for (i= low; i< (low+VL); i=i+1) /*runs for length VL*/ 

Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

low = low + VL; /*start of next vector*/ 

VL = MVL; /*reset the length to maximum vector length*/ 

} 
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Figure: Vector load store-unit with pipelining 

Vector Length Registers 

 Vector length not known at compile time? 

 Use Vector Length Register (VLR) 

 Use strip mining for vectors over the maximum length: 

low = 0; 
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Vector Mask Registers 

 Consider: 

 

for (i = 0; i < 64; i=i+1) 

if (X[i] != 0) 

X[i] = X[i] –Y[i]; 
 

vector loads and stores 

 Spread accesses across multiple banks 

 Control bank addresses independently 

 Load or store non sequential words 

 Support multiple vector processors sharing the same memory 

 Example: 

 32 processors, each generating 4 loads and 2 stores/cycle 

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 

 How many memory banks needed? 

 32x6=192 accesses, 
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 Use vector mask register to “disable” elements (if conversion): 

LVV1, Rx; load vector X into V1 

LVV2, Ry; load vector Y 

L.DF0, #0; load FP zero into F0 

SNEVS.DV1, F0; sets VM (i) to 1 if V1 (i)! =F0 

SUBVV.DV1, V1, V2; subtract under vector mask 

SVRx, V1; store the result in X 

 GFLOPS rate decreases 

Memory Banks 

 Memory system must be designed to support high bandwidth for 
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 15/2.167≈7 processor cycles 

 1344! 

Stride 

 Consider: 

 

for (i = 0; i < 100; i=i+1) 

for (j = 0; j < 100; j=j+1) { 

A[i][j] = 0.0; 

for (k = 0; k < 100; k=k+1) 

A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

} 
 

takes 
 

 Stride of 32: the worst case scenario happens when the stride value is 

a multiple of the number of banks, which this is! 

Every access to memory will collide with the previous one! Thus, the total 

time will be: 

12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element! 

Scatter-Gather 

 Consider sparse vectors A & C and vector indices K & M, and A and C 

have the same number (n) of non-zeros: 

for (i = 0; i < n; i=i+1) 
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Must vectorize multiplication of rows of B with columns of D 

Use non-unit stride 

Bank conflict (stall) occurs when the same bank is hit faster than bank 

busy time: 

#banks / LCM(stride, #banks) < bank busy time (in # of cycles) 

Example: 

8 memory banks with a bank busy time of 6 cycles and a total memory 

latency of 12 cycles. 

How long will it take to complete a 64-element vector load with a stride of 

1? With a stride of 32? 

Answer: 

Stride of 1: number of banks is greater than the bank busy time, so it 
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A[K[i]] = A[K[i]] + C[M[i]]; 

Ra, Rc, RkandRmthe starting addresses of vectors 

 Use index vector: 

LVVk, Rk;load K 

LVIVa, (Ra+Vk);load A[K[]] 

LVVm, Rm;load M 

LVIVc, (Rc+Vm);load C[M[]] 

ADDVV.DVa, Va, Vc;add them 

SVI(Ra+Vk), Va;store A[K[]] 

Programming Vec. Architectures 

 Compilers can provide feedback to programmers 
 

 
 
 

4. Explain in detail about Graphics Processing Units and its Programming. 

[R-2013] 

 

Graphical Processing Units 

 
 

improve performance of a wider range of applications? 
 

 

CPU is the host, GPU is the device 

-like programming language for GPU 
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supplemented to 

 Programmers can provide hints to compiler 

Summary of Vector Architecture 



 

 

 

 

 

 

 

Optimizations: 

Multiple Lanes: > 1 element per clock cycle 

Vector Length Registers: Non-64 wide vectors 

Vector Mask Registers: IF statements in vector code 

Memory Banks: Memory system optimizations to support vector processors 

Stride: Multiple dimensional matrices 

Scatter-Gather: Sparse matrices 

Programming Vector Architectures: Program structures affecting 

performance 
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Compute Unified Device Architecture (CUDA) 

OpenCLfor vendor-independent language 

CUDA thread 
 

Threads and Blocks 
 

CUDA threads, with thousands of which being utilized to various styles of 

parallelism: multithreading, SIMD, MIMD, ILP 

 

Thread Blocks: groups of up to 512 elements 

Multithreaded SIMD Processor: hardware that executes a whole thread 
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block (32 elements executed per thread at a time) 

Blocks are executed independently and in any order 

Different blocks cannot communicate directly but can coordinate using atomic 

memory operations in Global Memory 

applications or OS 

A multiprocessor composed of multithreaded SIMD processors 

A Thread Block Scheduler 

Grid, Threads, and Blocks 
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NVIDIA GPU Architecture 
 

Works well with data-level parallel problems 

Scatter-gather transfers 

Mask registers 

Large register files 

No scalar processor 
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Uses multithreading to hide memory latency 

Has many functional units, as opposed to a few deeply pipelined units like a 

vector processor 

Example 

8192 

 Code that works over all elements is the grid 

 Thread blocks break this down into manageable sizes 

  

 SIMD instruction executes 32 elements at a time 

 Thus grid size = 16 blocks 

 Block is analogous to a strip-mined vector loop with vector length of 32 
 

 

Fig. Floor plan of the Fermi GTX 480 GPU 

This diagram shows 16 multithreaded SIMD Processors. The Thread Block 
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 Block is assigned to a multithreaded SIMD processor by the thread block 

scheduler 

 Current-generation 

processors 

GPUs (Fermi) have 7-15 multithreaded SIMD 
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Scheduler is highlighted on the left. The GTX 480 has 6 GDDR5 ports, each 64 bits 

wide, supporting up to 6 GB of capacity. The Host Interface is PCI Express 2.0 x 16. 

Giga Thread is the name of the scheduler that distributes thread blocks to 

Multiprocessors, each of which has its own SIMD Thread Scheduler. 

Terminology 

Threads of SIMD instructions 

 Each has its own PC 

 Thread scheduler uses scoreboard to dispatch 

 No data dependencies between threads! 

 Keeps track of up to 48 threads of SIMD instructions 

 Hides memory latency 
 

 
 
 
 
 
 
 
 
 
 
 

Fig .Scheduling of threads of SIMD instructions. 
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 32 SIMD lanes 

 Wide and shallow compared to vector processors 
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 Fermi has 16 physical SIMD lanes, each containing 2048 registers 

The scheduler selects a ready thread of SIMD instructions and issues an instruction 

synchronously to all the SIMD Lanes executing the SIMD thread. Because threads 

of SIMD instructions are independent, the scheduler may select a different SIMD 

thread each time. 

Example 
 

 Divided into lanes 

 Each SIMD thread is limited to 64 registers 

 SIMD thread has up to: 

 64 vector registers of 32 32-bit elements 

 32 vector registers of 32 64-bit elements 
 

 

Fig. Simplified block diagram of a Multithreaded SIMD Processor. 
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It has 16 SIMD lanes. The SIMD Thread Scheduler has, say, 48 independent 

threads of SIMD instructions that it schedules with a table of 48 PCs. 

NVIDIA Instruction Set Arch. 
 

 “Parallel Thread Execution (PTX)” 

 Uses virtual registers 

 Translation to machine code is performed in software 

 Example: one CUDA thread, 8192 of these created! 

shl.s32R8, blockIdx, 9; Thread Block ID * Block size (512 or 29) 

add.s32R8, R8, threadIdx; R8 = i= my CUDA thread ID 

ld.global.f64RD0, [X+R8]; RD0 = X[i] 

 Push on divergent branch 

 …and when paths converge 

 Act as barriers 

 Pops stack 

-thread-lane 1-bit predicate register, specified by programmer 

Example 

if (X[i] != 0) 

X[i] = X[i] –Y[i]; 

else X[i] = Z[i]; 

ld.global.f64RD0, [X+R8]; RD0 = X[i] 

setp.neq.s32P1, RD0, #0; P1 is predicate register 1 
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ld.global.f64RD2, [Y+R8]; RD2 = Y[i] 

mul.f64 R0D, RD0, RD4; Product in RD0 = RD0 * RD4 (scalar a) 

add.f64 R0D, RD0, RD2; Sum in RD0 = RD0 + RD2 (Y[i]) 

st.global.f64 [Y+R8], RD0; Y[i] = sum(X[i]*a + Y[i]) 

Conditional Branching 

 Branch synchronization stack 

 Entries consist of masks for each SIMD lane 

 I.e. which threads commit their results (all threads execute) 

 Instruction markers to manage when a branch diverges into multiple 

execution paths 
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@!P1, braELSE1, *Push; Push old mask, set new mask bits 

; if P1 false, go to ELSE1 

ld.global.f64RD2, [Y+R8]; RD2 = Y[i] 

sub.f64RD0, RD0, RD2; Difference in RD0 

st.global.f64[X+R8], RD0; X[i] = RD0 

@P1, braENDIF1, *Comp; complement mask bits 

; if P1 true, go to ENDIF1 

ELSE1:ld.global.f64 RD0, [Z+R8]; RD0 = Z[i] 

st.global.f64 [X+R8], RD0; X[i] = RD0 

ENDIF1: <next instruction>, *Pop; pop to restore old mask 

NVIDIA GPU Memory Structures 
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off-chip DRAM 

 “Private memory”, not shared by any other lanes 

 Contains stack frame, spilling registers, and private variables 

 Recent GPUs cache this in L1 and L2 caches 

on-chip 

 Shared by SIMD lanes / threads within a block only 

off-chip memory shared by SIMD processors is GPU Memory 

Host can read and write GPU memory 
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Fig.GPU Memory structures 

 
 

GPU Memory is shared by all Grids (vectorized loops), Local Memory is 

shared by all threads of SIMD instructions within a thread block (body of a vectorized 

loop), and Private Memory is private to a single CUDA Thread. 

Fermi Architecture Innovations 
 

 Two SIMD thread schedulers, two instruction dispatch units 

 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 

special function units 
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 Thus, two threads of SIMD instructions are scheduled every two clock 

cycles 

 
 

 

-20X faster than gen- 
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Fig. Block Diagram of Fermi’s Dual SIMD Thread Scheduler. 

I/D L1/SIMD proc and shared L2 

-bit addressing and unified address space: C/C++ ptrs 

-running apps 
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Fermi Multithreaded SIMD Proc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. (i)Consider the following code, which multiplies two vectors that contain 

single-precision complex values: [R-2013] 

 
For (i=0; i<300; i++) { 

c_re[i] = a_re[i] * b_re[i] –a_im[i] * b_im[i]; 
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c_im[i] = a_re[i] * b_im[i] –a_im[i] * b_re[i]; 

Assume that the processor runs at 700 MHz and has a maximum vector length of 

64. 

 
A. What is the arithmetic intensity of this kernel (i.e., the ratio of floating- 

point operations per byte of memory accessed)? 

B. Convert this loop into VMIPS assembly code using strips mining. 

C.Assuming chaining and a single memory pipeline, how many chimes are 

required? 

A. This code reads four floats and writes two floats for every six FLOPs, so the 

arithmetic intensity = 6/6 = 1. 

 

 
 

 
C.Identify convoys: 

 
 

1. mulvv.slv # a_re* b_re 

# (assume already loaded), 

88 

B. Assume MVL = 64 300 mod 64 = 44 
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# loada_im 

2. lvmulvv.s# load b_im, a_im* b_im 

3. subvv.ssv# subtract and store c_re 

4. mulvv.slv # a_re* b_re, 

# load next a_revector 

5. mulvv.slv # a_im* b_re, 

# load next b_revector 

6. addvv.ssv# add and store c_im 

6 chimes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(ii)With examples, explain how do you detect and enhance Loop Level 

Parallelism? 

[R-2013] 

Loop-Level Parallelism 

her data accesses in later iterations are dependent 

on data values produced in earlier iterations 
89 
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S1 and S2 use values computed by S1 in previous iteration 

S2 uses value computed by S1 in same iteration 

Example 3: 

for (i=0; i<100; i=i+1) { 

A[i] = A[i] + B[i]; /* S1 */ 

B[i+1] = C[i] + D[i]; /* S2 */ 

} 

S1 uses value computed by S2 in previous iteration but dependence is not 

circular so loop is parallel 

Transform to: 

A[0] = A[0] + B[0]; 

for (i=0; i<99; i=i+1) { 

Loop-carried dependence 

Example 1: 

 
for (i=999; i>=0; i=i-1) 

x[i] = x[i] + s; 

No loop-carried dependence 

Example 2: 

for (i=0; i<100; i=i+1) { 

A[i+1] = A[i] + C[i]; /* S1 */ 

B[i+1] = B[i] + A[i+1]; /* S2 */ 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B[i+1] = C[i] + D[i]; 

A[i+1] = A[i+1] + B[i+1]; 

} 

B[100] = C[99] + D[99]; 

Example 4: 

for (i=0;i<100;i=i+1) { 

A[i] = B[i] + C[i]; 

D[i] = A[i] * E[i]; 

} 

No loop-carried dependence 

Example 5: 
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for (i=1;i<100;i=i+1) { 

Y[i] = Y[i-1] + Y[i]; 

} 

Loop-carried dependence in the form of recurrence 

Finding dependences 

1-Darray index iisaffine: 

ax i+ b (with constants a and b) 

n-D array index is affine if it is affine in each dimension 
 

 Store to ax i+ b, then 

 Load from cx i+ d 
 

X[2*i+3] = X[2*i] * 5.0; 

} 
 

possible. 

Example 2: 

 
for (i=0; i<100; i=i+1) { 

Y[i] = X[i] / c; /* S1 */ 

X[i] = X[i] + c; /* S2 */ 

Z[i] = Y[i] + c; /* S3 */ 

Y[i] = c -Y[i]; /* S4 */ 
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iruns from mton 

Dependence exists if: 

Given j, ksuch that m≤ j≤ n, m≤ k≤ n 

to ax j+ b, load from ax k+ d, and ax j+ b= cx k+ d 

Finding dependences 

If a dependency exists, GCD(c,a) must evenly divide (d-b) 

Example 1: 

for (i=0; i<100; i=i+1) { 

-b=- 
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} 

for antidependences and output dependencies: 

RAW: S1S3, S1S4 on Y[i], not loop-carried 

WAR: S1S2 on X[i]; S3S4 on Y[i] 

WAW: S1  S4 on Y[i] 

Reductions 

Reduction Operation: 

for (i=9999; i>=0; i=i-1) 

sum = sum + x[i] * y[i]; 

Transform to… 

for (i=9999; i>=0; i=i-1) 
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sum [i] = x[i] * y[i]; 

for (i=9999; i>=0; i=i-1) 

finalsum= finalsum+ sum[i]; 

Do on p processors: 

for (i=999; i>=0; i=i-1) 

finalsum[p] = finalsum[p] + sum[i+1000*p]; 

Note: assumes associativity! 

h 
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UNIT IV 

THREAD LEVEL PARALLELISM 

PART A 

 
1. Define sequential consistency memory model(NOV/DEC 2016) 

The most straightforward model for memory consistency is called sequential 

consistency. Sequential consistency requires that the result of any execution be the 

same as if the memory accesses executed by each processor were kept in order 

and the accesses among different processors were arbitrarily interleaved. The 

simplest way to implement sequential consistency is to require a processor to delay 

the completion of any memory access until all the invalidations caused by 

 
 

3. What is the disadvantage of having a distributed memory? [R-2013] 

The key disadvantages for distributed memory architecture are that communicating 

data between processors becomes somewhat more complex, and that it requires 

more effort in the software to take advantage of the increased memory bandwidth 

afforded by distributed memories. 

 
4. What is the importance of memory consistency model? [Nov/Dec 2013] 

Consistency model defines correct behavior 

Coherence protocol is only a means to an 

Consistency model restricts ordering of loads/stores 
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that access are completed. 

What is loop unrolling? What are the major limitations of loop unrolling? 

[Nov/Dec 2012] 

To control the various dependencies the loop is unrolled as many times as 

possible. 

Limitations 

 Increased program code size, which can be undesirable, particularly for 

embedded applications. 

 The code is less readable. 

 Increased register usage in a single iteration to store temporary variables 

 Unrolled loops that contain branches are even slower than recursions 
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5. Why do we need synchronization? [May/June 2014] 

The key ability we require to implement synchronization in a multiprocessor is a set 

of hardware primitives with the ability to atomically read and modify a memory 

location. Without such a capability, the cost of building basic synchronization 

primitives will be too high and will increase as the processor count increases. 

 
5. When is a memory said to be coherent in a multi-processor system? 

[R-2013] 

 
 

8. What are the advantages of CMP architecture? ? [Nov/Dec 2012] 

 CMP is easier to implement. 

 A combination of CMP with SMT is superior. 

 A multicore design takes several processor cores and packages them as a 

single processor. 

 The goal is to enable system to run more tasks simultaneously and thereby 

achieve greater overall system performance. 

 
9. Enlist the features of SMT Architecture.[April/May 2015] 

 Fully exploit thread-level parallelism and instruction-level parallelism. 

94 

In multi- processor system, two or more processing elements work concurrently. A 

memory system is coherent if any read of a data item returns the most recently 

written value of that data item when two processors access the same memory 

location. 

7. Write a note on multiprocessor cache coherence problem? [Nov/Dec 

2012][April/May 2014][May/June 2012](Apr/may 2017) 

Caching shared data introduces a new problem because the view of memory held 

by two different processors is through their individual caches, which, without any 

additional precautions, could end up seeing two different values. Two different 

processors can have two different values for the same location. This difficulty is 

generally referred to as the cache coherence problem. 
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 Better Performance 

 Mix of independent programs 

 Programs that are parallelizable 

 Single threaded program 

 
 

10. Why are design issues of SMT and CMP architecture are important? 

[May/June 2014] 

To improve parallelism, throughput-and application performance design issues of 

SMT and CMP architecture are important 

 
11. What is the disadvantage of having a distributed memory? [R-2013] 

 

 SMT also increases hardware design flexibility. 

 Simultaneous multithreading increases the complexity of instruction 

scheduling 

 
14. What are the design challenges in SMT? [May/June 2012] 

 Larger register file needed to hold multiple contexts 

 Not affecting clock cycle time, especially in Instruction issue - more 

candidate instructions need to be considered 

 
15. What is multithreading? What is SMT?[Nov/Dec 2014] 
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The key disadvantages for distributed memory architecture are that communicating 

data between processors becomes somewhat more complex, and that it requires 

more effort in the software to take advantage of the increased 

memory bandwidth afforded by distributed memories. 

12. What is fine grained multithreading? [May/June 2013] 

Fine-grained multithreading switches between threads on each instruction, causing 

the execution of multiples threads to be interleaved. This interleaving is often done 

in a round-robin fashion, skipping any threads that are stalled at that 

time. 

13.What are the advantages of SMT? [R-2013] 
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Threads  to  share  the  functional  units  of  one  processor  via  overlapping 

.Simultaneous multithreading (SMT) is a variation on multithreading that uses the 

resources of a multiple-issue, dynamically scheduled processor to exploit TLP at the 

same time it exploits ILP. 

 
16. List the methods for providing synchronization in threads? 

(NOV/DEC 2016) 

The method for providing synchronization in threads are spinlock, data 

coherency, semaphores and readers-writers lock. 

 
17. Define sequential consistency ?(NOV/DEC 2016) 
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The most straightforward model for memory consistency is called 

sequential consistency. Sequential consistency requires that the result of any 

execution be the same as if the memory accesses executed by each processor 

were kept in order and the accesses among different processors were arbitrarily 

interleaved. 
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PART B 

1. Explain the symmetric shared memory architecture. (or) Explain the UMA 

architecture. (or) Explain the snoopy based Cache coherence protocols with 

neat diagram. [Apr/ May 2015], [May/Jun 2014] [Nov/ Dec 2014], [Nov/ Dec 

2013] 

Symmetric Shared Memory Architectures: 

 
 

The Symmetric Shared Memory Architecture consists of several processors with a 

single physical memory shared by all processors through a shared bus which is 

shown below. 

 

 

Small-scale shared-memory machines usually support the caching of both shared 

and private data. Private data is used by a single processor, while shared data is 

used by multiple processors; essentially providing communication among the 
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Table. The cache-coherence problem for a single memory location (X), read 

and written by two processors (A and B). 

The first aspect, called coherence, defines what values can be returned by 

a read. The second aspect, called consistency, determines when a written 

value will be returned by a read. 

processors through reads and writes of the shared data. When a private item is 

cached, its location is migrated to the cache, reducing the average access time as 

well as the memory bandwidth required. 

Cache Coherence in Multiprocessors: 

Introduction of caches caused a coherence problem for I/O operations; the same 

problem exists in the case of multiprocessors, because the view of memory held by 

two different processors is through their individual caches. The table illustrates the 

problem and shows how two different processors can have two different 

values for the same location. This difficulty s generally referred to as the 

cache-coherence problem. 

 
 
 
 

 
 
 

Time 

 
 

Event 

Cache 

contents for 

CPU A 

Cache 

contents for 

CPU B 

Memory 

contents for 

location X 

0    1 

1 CPU A reads X 1  1 

2 CPU B reads X 1 1 1 

3 CPU A stores 0 into X 0 1 0 

 
 
 
 
 

Coherence and consistency are complementary: Coherence defines the 

behavior of reads and writes to the same memory location, while consistency 

defines the behavior of reads and writes with respect to accesses to other 

memory locations. 

Basic Schemes for Enforcing Coherence 

The protocols to maintain coherence for multiple processors are called 

cache-coherence protocols. There are two classes of protocols, which use 

different techniques to track the sharing status, in use: 

Directory based—the sharing status of a block of physical memory is kept in just 

one location, called the directory; we focus on this approach in section 6.5, when 

we discuss scalable shared-memory architecture. 
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[IF THE QUESTION ASKED LIKE: EXPLAIN SNOOPING BASED PROTOCOL, 

START WRITE FROM HERE] 

Snooping—every cache that has a copy of the data from a block of physical 

memory also has a copy of the sharing status of the block, and no centralized state 

is kept. The caches are usually on a shared-memory bus, and all cache controllers 

monitor or snoop on the bus to determine whether or not they have a copy of a block 

that is requested on the bus. 

Snooping Protocols 

The methods which ensure that a processor has exclusive access to a data 

item before it write that item. This style of protocol is called a write invalidate 

protocol because it invalidates other copies on a write. It is by far the most 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

two processors do attempt to write the same data simultaneously, one of them wins 

the race, causing the other processor’s copy to be invalidated. For the other 

processor to complete its write, it must obtain a new copy of the data, which must 

now contain the updated value. Therefore, this protocol enforces write serialization. 

Table. An example of an invalidation protocol working on a snooping bus for 

a single cache block (X) with write-back caches. 

  
Contents of 

Contents 

of 

Contents of 

memory 

Processor 

activity 

Bus activity CPU A’s 

cache 

CPU B’s 

cache 

location X 
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common protocol, both for snooping and for directory schemes. Exclusive access 

ensures that no other readable or writable copies of an item exist when the write 

occurs: all other cached copies of the item are invalidated. 

WRITE INVALIDATE: 

The following table shows an example of an invalidation protocol for a snooping 

bus with write-back caches in action To see how this protocol ensures coherence, 

consider a write followed by a read by another processor: Since the write requires 

exclusive access, any copy held by the reading processor must be invalidated 

(hence the protocol name). 

Thus, when the read occurs, it misses in the cache and is forced to fetch a new 

copy of the data. For a write, we require that the writing processor have exclusive 

access, preventing any other processor from being able to write simultaneously. If 
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invalidate has emerged as the winner for the vast majority of designs. 

Table. An example of a write update or broadcast protocol working on a 

snooping bus for a single cache block (X) with write-back caches. 

 

    0 

CPU A reads X Cache miss for X 0  0 

CPU B reads X Cache miss for X 0 0 0 

CPU A writes a 

1 to X 
Invalidation for X 1 

 
0 

CPU B reads X Cache miss for X 1 1 1 

WRITE UPDATE PROTOCOL: 

The alternative to an invalidate protocol is to update all the cached 

copies of a data item when that item is written. This type of protocol is called 

a write update or writes broadcast protocol. Table shows an example of a write 

update protocol in operation. In the decade since these protocols were developed, 

 
 
 
 

 
  Contents 

of 

Contents 

of 

Contents of 

memory 

Processor 

activity 

Bus activity CPU A’s 

cache 

CPU B’s 

cache 

location X 

    0 

CPU A reads X 
Cache miss for 

X 
0 

 
0 

CPU B reads X 
Cache miss for 

X 
0 0 0 

CPU A writes a 

1 to X 

Write broadcast 

of X 
1 1 1 

CPU B reads X  1 1 1 

 
State transition diagram: 
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rather than in memory. Happily, write-back caches can use the same snooping 

scheme both for caches misses and for writes: Each processor snoops every 

address placed on the bus. If a processor finds that it has a dirty copy of the 

requested cache block, it provides that cache block in response to the read request 

and causes the memory access to be aborted. Since write-back caches generate 

lower requirements for memory bandwidth, they are greatly preferable in a 

multiprocessor, despite the slight increase in complexity. Therefore, we focus on 

implementation with write-back caches. 

 
2. Explain the concept of distributed shared memory and also explain 

directory based cache coherence protocols with an example. (or) Explain the 
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Basic Implementation Techniques 

The serialization of access enforced by the bus also forces serialization of writes, 

since when two processors compete to write to the same location, one must obtain 

bus access before the other. The first processor to obtain bus access will cause the 

other processor’s copy to be invalidated, causing writes to be strictly serialized. One 

implication of this scheme is that a write to a shared data item 

cannot complete until it obtains bus access. 

For a write-back cache, however, the problem of finding the most recent data 

value is harder, since the most recent value of a data item can be in a cache 
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NUMA architecture with neat diagram. [Nov/ Dec 2014] [Apr/ May 2015], 

[May/Jun 2014] 

There are several disadvantages in Symmetric Shared Memory architectures. 

 First, compiler mechanisms for transparent software cache coherence are 

very limited. 

 Second, without cache coherence, the multiprocessor loses the advantage 

of being able to fetch and use multiple words in a single cache block for close 

to the cost of fetching one word. 

 Third, mechanisms for tolerating latency such as pre-fetch are more 

useful when they can fetch multiple words, such as a cache block, and where 

the fetched data remain coherent; These disadvantages are 

keeps the state of every block that may be cached. Information in the directory 

includes which caches have copies of the block, whether it is dirty, and so on. 
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magnified by the large latency of access to remote memory versus a local 

cache. 

 For these reasons, cache coherence is an accepted requirement in 

small-scale multiprocessors. For larger-scale architectures, there are new 

challenges to extending the cache-coherent shared-memory model. 

Although the bus can certainly be replaced with a more scalable 

interconnection network and we could certainly distribute the memory so that 

the memory bandwidth could also be scaled, the lack of scalability of the 

snooping coherence scheme needs to be addressed is known as 

Distributed Shared Memory architecture. 

The first coherence protocol is known as a directory protocol. A directory 
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following: 

Shared—one or more processors have the block cached, and the value in 

memory is up to date (as well as in all the caches) 

Uncached—No processor has a copy of the cache block 

Exclusive—exactly one processor has a copy of the cache block and it has 

written the block, so the memory copy is out of date. The processor is called the 

owner of the block. 

A catalog of the message types that may be sent between the processors and the 

directories. Figure shows the type of messages sent among nodes. 

 The local node is the node where a request originates. 

 The home node is the node where the memory location and the directory 
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Figure: A directory is added to each node to implement cache coherence in a 

distributed-memory multiprocessor. 

Directory-Based Cache-Coherence Protocols: The Basics 

 There are two primary operations that a directory protocol must implement: 

o Handling a read miss and handling a write to a shared, clean cache 

block. (Handling a write miss to a shared block is a simple 

combination of these two.) 

o To implement these operations, a directory must track the state of 

each cache block. In a simple protocol, these states could be the 
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entry of an address reside. The physical address space is statically 

distributed, so the node that contains the memory and directory for a given 

physical address is known. For example, the high-order bits may provide the 

node number, while the low-order bits provide the offset within the memory 

on that node. The local node may also be the home node. The directory must 

be accessed when the home node is the local node, since copies may exist 

in yet a third node, called a remote node. 

 A remote node is the node that has a copy of a cache block, whether 

exclusive (in which case it is the only copy) or shared. A remote node may 

be the same as either the local node or the home node. In such cases, the 

basic protocol does not change, but interprocessor messages may be 

 

 
 

 

Message 

type 

 
 
 

 
Source 

 

 

Destinatio 

n 

Messa 

ge 

content 

s 

 
 
 

 
Function of this message 

Read miss Local 

cache 
Home 

directory 

P, A Processor P has a read miss 

at address A; request data 

and make P a read sharer. 

Write miss Local 

cache 

 
Home 

directory 

P, A Processor P has a write miss 

at address A; — request data 

and make P the exclusive 

owner. 

Invalidate Home 

directory 

Remote 

cache 

A Invalidate a shared copy of 

data at address A. 

Fetch Home 

directory 

Remote 

cache 

A Fetch the block at address A 

and send it to its home 

directory; change the state of 

A in the remote cache to 

shared. 

Fetch/inva 

lidate 

Home 

directory 

Remote 

cache 

A Fetch the block at address A 

and send it to its home 

directory; invalidate the block 

104 

replaced with intraprocessor messages. 
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    in the cache. 

Data value 

reply 

Home 

directory 

Local 

cache 

D Return a data value from the 

home memory. 

Data write 

back 

Remote 

cache 

Home 

directory 

A, D Write back a data value for 

address A. 

(where P=requesting processor number), A=requested address, and D=data 

contents). 

Example : 

State transition diagram for an individual cache block in a directory-based 

system. 
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Figure: State transition diagram for an individual cache block in a directory- 

based system 

To understand these directory operations, let’s examine the requests received and 

actions taken state by state. When a block is in the uncached state, the copy in 

memory is the current value, so the only possible requests for that block are 

_ Read miss—The requesting processor is sent the requested data from memory, 

and the requestor is made the only sharing node. The state of the block is made 

shared. 

_ Write miss—The requesting processor is sent the value and becomes the sharing 

node. The block is made exclusive to indicate that the only valid copy is 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

cached. Sharers indicate the identity of the owner. 

When the block is in the shared state, the memory value is up to date, so the same 

two requests can occur: 

_ Read miss—The requesting processor is sent the requested data from memory, 

and the requesting processor is added to the sharing set. 

_ Write miss—The requesting processor is sent the value. All processors in the set 

Sharers are sent invalidate messages, and the Sharers set is to contain the identity 

of the requesting processor. The state of the block is made exclusive. 

When the block is in the exclusive state, the current value of the block is held in the 

cache of the processor identified by the set Sharers (the owner), so there are three 

possible directory requests: 
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_ Read miss—The owner processor is sent a data fetch message, which causes the 

state of the block in the owner’s cache to transition to shared and causes the owner 

to send the data to the directory, where it is written to memory and sent back to the 

requesting processor. The identity of the requesting processor is added to the set 

Sharers, which still contains the identity of the processor that was the owner (since 

it still has a readable copy). 

_ Data write back—The owner processor is replacing the block and therefore must 

write it back. This write back makes the memory copy up to date (the home directory 

essentially becomes the owner), the block is now uncached, and the Sharers set is 

empty. 

spin locks can be built using a simple hardware synchronization instruction and the 

coherence mechanism. 

Basic Hardware Primitives 

The key ability we require to implement synchronization in a multiprocessor is a 

set of hardware primitives with the ability to atomically read and modify a memory 

location. Without such a capability, the cost of building basic synchronization 

primitives will be too high and will increase as the processor count increases. 

There are a number of alternative formulations of the basic hardware primitives, 

all of which provide the ability to atomically read and modify a location, together with 

some way to tell if the read and write were performed atomically. These hardware 

primitives are the basic building blocks that are used to build a wide 
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_ Write miss—The block has a new owner. A message is sent to the old owner, 

causing the cache to invalidate the block and send the value to the directory, from 

which it is sent to the requesting processor, which becomes the new owner. Sharers 

is set to the identity of the new owner, and the state of the block remains 

exclusive. 

3. Discuss about synchronization process used in multiprocessor system. 

[May/Jun 2013], [Nov/ Dec 2013] 

Synchronization 

Synchronization mechanisms are typically built with user-level software 

routines that rely on hardware-supplied synchronization instructions. The efficient 
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retrieving a 0. 

There are a number of other atomic primitives that can be used to implement 

synchronization. They all have the key property that they read and update a memory 

value in such a manner that can tell whether or not the two operations executed 

atomically. One operation, present in many older multiprocessors, is test-and-set, 

which tests a value and sets it if the value passes the test. For example, we could 

define an operation that tested for 0 and set the value to 1, which can be used in a 

fashion similar to how we used atomic exchange. 

Another atomic synchronization primitive is fetch-and-increment: it returns the 

value of a memory location and atomically increments it. By using the value 0 to 

indicate that the synchronization variable is unclaimed, we can use fetch-and- 

increment, just as we used exchange. There are other uses of operations like 

variety of user-level synchronization operations, including things such as locks and 

barriers. 

One typical operation for building synchronization operations is the atomic 

exchange, which interchanges a value in a register for a value in memory. Use this 

to build a basic synchronization operation, assume that we want to build a simple 

lock where the value 0 is used to indicate that the lock is free and a 1 is used to 

indicate that the lock is unavailable. A processor tries to set the lock by doing an 

exchange of 1, which is in a register, with the memory address corresponding to the 

lock. The value returned from the exchange instruction is 1 if some other processor 

had already claimed access and 0 otherwise. In the latter case, the value is also 

changed to be 1, preventing any competing exchange from also 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fetch-and-increment. 

Implementing Locks Using Coherence 

We can use the coherence mechanisms of a multiprocessor to implement spin 

locks: locks that a processor continuously tries to acquire, spinning around a loop 

until it succeeds. Spin locks are used when a programmer expects the lock to be 

held for a very short amount of time and when she wants the process of locking to 

be low latency when the lock is available. Because spin locks tie up the processor, 

waiting in a loop for the lock to become free, they are inappropriate in some 

circumstances. 

The simplest implementation, which we would use if there were no cache 

coherence, would keep the lock variables in  memory. A  processor could 
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continually try to acquire the lock using an atomic operation, say exchange, and test 

whether the exchange returned the lock as free. To release the lock, the processor 

simply stores the value 0 to the lock. Here is the code sequence to lock a spin lock 

whose address is in R1 using an atomic exchange: 

DADDUI R2,R0,#1 

lockit: EXCH R2,0(R1) ; atomic exchange 

BNEZ R2,lockit ; already locked? 

 
 

If our multiprocessor supports cache coherence, we can cache the locks using 

the coherence mechanism to maintain the lock value coherently. Caching locks has 

two advantages. First, it allows an implementation where the process of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tallies the processes arriving at the barrier and one used to hold the processes until 

the last process arrives at the barrier. 

Synchronization Mechanisms for Larger-Scale Multiprocessors 

Software Implementations 

The major difficulty with our spin-lock implementation is the delay due to 

contention when many processes are spinning on the lock. One solution is to 

artificially delay processes when they fail to acquire the lock. The best performance 

is obtained by increasing the delay exponentially whenever the attempt to acquire 

the lock fails. Figure 6.41 shows how a spin lock with exponential back-off is 

implemented. 

Exponential back-off is a common technique for reducing contention in 
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“spinning” (trying to test and acquire the lock in a tight loop) could be done on a local 

cached copy rather than requiring a global memory access on each attempt to 

acquire the lock. The second advantage comes from the observation that there is 

often locality in lock accesses: that is, the processor that used the lock last will use 

it again in the near future. In such cases, the lock value may reside in the cache of 

that processor, greatly reducing the time to acquire the lock. 

Synchronization Performance Challenges 

Barrier Synchronization 

One additional common synchronization operation in programs with parallel 

loops is a barrier. A barrier forces all processes to wait until all the processes reach 

the barrier and then releases all of the processes. A typical implementation of a 

barrier can be done with two spin locks: one used to protect a counter that 
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gotit:  use data protected by lock 

Another technique for implementing locks is to use queuing locks. Queuing locks 

work by constructing a queue of waiting processors; whenever a processor frees up 

the lock, it causes the next processor in the queue to attempt access. This 

eliminates contention for a lock when it is freed. We show how queuing locks operate 

in the next section using a hardware implementation, but software implementations 

using arrays can achieve most of the same benefits Before we 

shared resources, including access to shared networks and buses. This 

implementation still attempts to preserve low latency when contention is small by 

not delaying the initial spin loop. The result is that if many processes are waiting, 

the back-off does not affect the processes on their first attempt to acquire the lock. 

We could also delay that process, but the result would be poorer performance when 

the lock was in use by only two processes and the first one happened to find it 

locked. 

ADDUI R3,R0,#1 ;R3 = initial delay 

lockit: LL R2,0(R1) ;load linked 

BNEZ R2,lockit ;not available-spin 

DADDUI R2,R2,#1 ;get locked value 

SC R2,0(R1) ;store conditional 

BNEZ R2,gotit ;branch if store succeeds 

DSLL R3,R3,#1 ;increase delay by factor of 2 

PAUSE R3 ;delays by value in R3 

J lockit  

 
 
 
 
 
 
 
 
 
 

look at hardware primitives, 

Hardware Primitives 

In this section we look at two hardware synchronization primitives. The first 

primitive deals with locks, while the second is useful for barriers and a number of 

other user-level operations that require counting or supplying distinct indices. In both 

cases we can create hardware primitive where latency is essentially identical to our 

earlier version, but with much less serialization, leading to better scaling when there 

is contention. 

The major problem with our original lock implementation is that it introduces a 

large amount of unneeded contention. For example, when the lock is released all 

processors generate both a read and a write miss, although at most one processor 
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can successfully get the lock in the unlocked state. This sequence happens on each 

of the 20 lock/unlock sequences. 

Improve this situation by explicitly handing the lock from one waiting processor to 

the next. Rather than simply allowing all processors to compete every time the lock 

is released, we keep a list of the waiting processors and hand the lock to one 

explicitly, when its turn comes. This sort of mechanism has been called a queuing 

lock. Queuing locks can be implemented either in hardware, or in software using an 

array to keep track of the waiting processes. 

 
4. Explain in detail about the needs and types of memory consistency 

models. [Apr/ May 2015], [Nov/ Dec 2014], [May/Jun 2014], [Nov/ Dec 2013], 

 

 Although the question of how consistent memory must be seems simple, 

it is remarkably complicated, as we can see with a simple example. 

 
Here are two code segments from processes P1 and P2, shown side by 

side: 

 
P1: A = 0; P2: B = 0; 

..... ..... 

A = 1; B = 1; 

L1: if (B == 0) ... L2: if (A == 0)... 
 

 

111 

[May/Jun 2013] 

 Cache coherence ensures that multiple processors see a consistent view 

of memory. 

 It does not answer the question of how consistent the view of memory 

must be. By “how consistent” we mean, when must a processor see a 

value that has been updated by another processor? Since processors 

communicate through shared variables (used both for data values and for 

synchronization), the question boils down to this: In what order must a 

processor observe the data writes of another processor? Since the only 

way to “observe the writes of another processor” is through reads, the 

question becomes, what properties must be enforced among reads and 

writes to different locations by different processors? 
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 Assume that the processes are running on different processors, and that 

locations A and B are originally cached by both processors with the initial 

value of 0. 

 If writes always take immediate effect and are immediately seen by other 

processors, it will be impossible for both if statements (labelled L1 and L2) to 

evaluate their conditions as true, since reaching the if statement means that 

either A or B must have been assigned the value 1. But suppose the write 

invalidate is delayed, and the processor is allowed to continue during this 

delay; then it is possible that both P1 and P2 have not seen the invalidations 

for B and A (respectively) before they attempt to read the values. The 

question is, Should this behaviour be allowed, and if so, under 

processor to delay the completion of any memory access until all the 

invalidations caused by that access are completed. Of course, it is equally 

effective to delay the next memory access until the previous one is completed. 

 Remember that memory consistency involves operations among different 

variables: the two accesses that must be ordered are actually to different 

memory locations. In our example, we must delay the read of A or B (A == 0 

or B == 0) until the previous write has completed (B = 1 or A = 1). Under 

sequential consistency, we cannot, for example, simply place the write in a 

write buffer and continue with the read. 
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what conditions? 

SEQUENTIAL CONSISTENCY: 

 The most straightforward model for memory consistency is called sequential 

consistency. Sequential consistency requires that the result of any execution 

be the same as if the memory accesses executed by each processor were 

kept in order and the accesses among different processors were arbitrarily 

interleaved. 

 Sequential consistency eliminates the possibility of some nonobvious 

execution in the previous example because the assignments must be 

completed before the if statements are initiated. 

 The simplest way to implement sequential consistency is to require a 
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Relaxed Consistency Models: 

 The key idea in relaxed consistency models is to allow reads and writes to 

complete 

out of order, but to use synchronization operations to enforce ordering, so that a 

synchronized program behaves as if the processor were sequentially consistent. 

There are a variety of relaxed models that are classified according to what read and 

write orderings they relax. We specify the orderings by a set of rules of the form 

X→Y, meaning that operation X must complete before operation Y is done. 

Sequential consistency requires maintaining all four possible orderings: 

R→W, 

R→R, 

operations enforce ordering. 

By relaxing these orderings, the processor can possibly obtain significant 

performance advantages. There are, however, many complexities in describing 

relaxed consistency models, including the advantages and complexities of relaxing 

different orders, defining precisely what it means for a write to complete, and 

deciding when processors can see values that the processor itself has written. 
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W→R, 

and W→W. 

The relaxed models are defined by which of these four sets of orderings they relax: 

1. Relaxing the W→R ordering yields a model known as total store ordering or 

processor consistency. Because this ordering retains ordering among writes, many 

programs that operate under sequential consistency operate under this model, 

without additional synchronization. 

2. Relaxing the W→W ordering yields a model known as partial store order. 

3. Relaxing the R→W and R→R orderings yields a variety of models including weak 

ordering, the PowerPC consistency model, and release consistency, depending on 

the details of the ordering restrictions and how synchronization 
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5. Explain in detail about CMP and SMT architecture and its performance. 

[Nov/ Dec 2013], [May/Jun 2013] 

CMP architecture (MULTICORE ARCHITECTURE or CHIP MULTIPROCESSORS) 

 
 

Single-core computer 
 

 

 Integrates two or more independent cores into a single package composed 

of a single integrated circuit, called a die, or more dies packaged, each 

executing threads independently. 

 Every functional units of a processor is duplicated. 

 Multiple processors, each with a full set of architectural resources, result on 

the same die. 

 Processor may share an on-chip cache or each can have its own cache. 

Example: IBM Power4, HP Mako 

Challenges: 

Power, Die area, Cost 
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Figure: Single core computer architecture 

CMP ARCHITECTURE: 

Chip level multiprocessing (CMP or Multicore): 
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CHIP MULTITHREADING: 

 Chip multithreading is defined as the combination of chip multiprocessing 

and the hardware multithreading. 

 Chip multithreading is the capability of a processor to process multiple 

software threads and simultaneous Hardware threads of execution. 

 CMP is achieved by multiple cores on a single chip or multiple threads on a 

single core. 

 CMP processors are especially suited to server workloads, which generally 

have high levels of Thread Level Parallelism (TLP). 

 CMT Processors support many hardware strands through efficient sharing 
 

Fig: Multicore architecture showing multiple register and ALU 

Why Multicore? 

1. Difficult to make single-core clock frequencies even higher 

2. Deeply pipelined circuits: 

a. heat problems 

b. speed of light problems 

c. difficult design and verification 

d. large design teams necessary 

e. server farms need expensive air-conditioning 

3. Many new applications are multithreaded 

4. General trend in computer architecture (shift towards more parallelism) 
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of on chip resources such as pipelines, caches and predictors. 

 CMT Processors are a good match for server workloads, which have high 

levels of TLP and relatively low levels of ILP. 

Multi-core architectures 

Replicate multiple processor cores on a single die 
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What applications benefit from multicore? 

1. Database servers 

2. Web servers (Web commerce) 

3. Compilers 

4. Multimedia applications 

5. Scientific applications, CAD/CAM 

6. In general, applications with Thread-level parallelism (as opposed to 

instruction-level parallelism) 

SMT architecture (Simultaneous Multi-Threading concept for converting 

thread level parallelism into instruction level parallelism). 

needed to support the integrated exploitation of TLP through multithreading. 

In particular, dynamically scheduled superscalar have a large set of virtual registers 

that can be used to hold the register sets of independent threads (assuming 

separate renaming tables are kept for each thread). Because register renaming 

provides unique register identifiers, instructions from multiple threads can be mixed 

in the data path without confusing sources and destinations across the threads. 

 
Design Challenges in SMT 

 
 
 

 

116 

Simultaneous multithreading (SMT) is a variation on multithreading that uses the 

resources of a multiple-issue, dynamically scheduled processor to exploit TLP at the 

same time it exploits ILP. The key insight that motivates SMT is that modern 

multiple-issue processors often have more functional unit parallelism available. 

In the SMT case, TLP and ILP are exploited simultaneously, with multiple threads 

using the issue slots in a single clock cycle. Ideally, the issue slot usage is limited 

by imbalances in the resource needs and resource availability over multiple 

threads. 

As  mentioned  earlier,  simultaneous  multithreading  uses the  insight  that a 

dynamically scheduled processor already has many of the hardware mechanisms 
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Because a dynamically scheduled superscalar processor is likely to have a 

deep pipeline, SMT will be unlikely to gain much in performance if it were coarse 

grained. Since SMT makes sense only in a fine-grained implementation, we must 

worry about the impact of fine-grained scheduling on single-thread performance. 

 
This effect can be minimized by having a preferred thread, which still permits 

multithreading to preserve some of its performance advantage with a smaller 

compromise in single-thread performance. 

 
Unfortunately, mixing many threads will inevitably compromise the execution 

time of individual threads. Similar problems exist in instruction fetch. To 

 

completion, where choosing what instructions to commit may be challenging 

_ Ensuring that the cache and TLB conflicts generated by the simultaneous 

execution of multiple threads do not cause significant performance degradation In 

viewing these problems, two observations are important. First, in many cases, the 

potential performance overhead due to multithreading is small, and simple choices 

work well enough. Second, the efficiency of current superscalar is low enough that 

there is room for significant improvement, even at the cost of some overhead. 

 
The IBM Power5 used the same pipeline as the Power4, but it added SMT support. 

In adding SMT, the designers found that they had to increase a number of structures  

in  the  processor  so  as  to  minimize  the  negative  performance 
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maximize single-thread performance, we should fetch as far ahead as possible in 

that single thread and always have the fetch unit free when a branch is miss- 

predicted and a miss occurs in the prefetch buffer. Unfortunately, this limits the 

number of instructions available for scheduling from other threads, reducing 

throughput. 

There are a variety of other design challenges for an SMT processor, including the 

following: 

_ Dealing with a larger register file needed to hold multiple contexts 

_ Not affecting the clock cycle, particularly in critical steps such as instruction 

issue, where more candidate instructions need to be considered, and in instruction 
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consequences from fine-grained thread interaction. These changes included the 

following: 

 
Increasing the associativity of the L1 instruction cache and the instruction address 

translation buffers 

_ Adding per-thread load and store queues 

_ Increasing the size of the L2 and L3 caches 

_ Adding separate instruction prefetch and buffering 

_ Increasing the number of virtual registers from 152 to 240 

_ Increasing the size of several issue queues 
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Because SMT exploits thread-level parallelism on a multiple-issue superscalar, it 

is most likely to be included in high-end processors targeted at server markets. 

In addition, it is likely that there will be some mode to restrict the multithreading, so 

as to maximize the performance of a single thread. 

SMT PERFORMANCE: 
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Fig: A comparison of SMT and single-thread (ST) performance on the 8- 

processor IBM eServer p5575 
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UNIT V 

MEMORY ANDI/O 

PART A 

1. What is temporal locality and spatial locality? [May/June 2014](Apr/may 

2017) 

Temporal locality 

It’s an accessed item has a high probability being accessed in the near future 

Spatial locality 

These are items close in space to a recently accessed item have a high probability 

of being accessed next 

 

• Reducing miss penalty or miss rate via parallelism 

 
 

4. What is non-blocking cache? [R-2013] 

Non-blocking cache or lockup-free cache 

– allow data cache to continue to supply cache hits during a miss 

– requires out-of-order execution CPU 

 
 

5. What is hit under miss and hit under multiple miss? [May/June 2013] 

“Hit under miss” reduces the effective miss penalty by continuing during a miss. 
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2. What are the basic cache optimizations? (NOV/DEC 2016) 

Reduces miss rate 

Larger block size 

Bigger cache 

Higher associativity 

Reduces conflict rate 

Reduce miss penalty 

What are the advanced cache optimizations? [R-2013] 

• Reducing hit time 

• Increasing cache bandwidth 

• Reducing Miss Penalty 

• Reducing Miss Rate 
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“Hit under multiple miss” or “miss under miss” may further lower the effective miss 

penalty by overlapping multiple misses 

 
6. How to calculate Average memory access time2-way and Average memory 

access time4-way? [R-2013] 

Average memory access time2-way = Hit time + Miss rate × Miss Penalty 

Average memory access time4-way = Hit time × 1.1 + Miss rate × Miss Penalty 

 
7. What is way prediction? [R-2013] 

In way prediction, extra bits are kept in the cache to predict the way, or block 

within the set of the next cache access. This prediction means the multiplexor is 

and let the processor continue execution. 

 
 

10. What is a victim buffer and victim cache? [R-2013] 

In a write-back cache, the block that is replaced is sometimes called the victim. Write 

buffer is called as a victim buffer. The write victim buffer or victim buffer contains the 

dirty blocks that are discarded from a cache because of a miss. Rather than stall on 

a subsequent cache miss, the contents of the buffer are checked on a miss to see 

if they have the desired data before going to the next lower-level memory. This is a 

victim cache. 

 
11. What is access time and cycle time?[May/June 2014] 
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set early to select the desired block, and only a single tag comparison 

is performed that clock cycle in parallel with reading the cache data. 

8. What is sequential interleaving? [R-2013] 

A simple mapping that works well is to spread the addresses of the block 

sequentially across the banks, called sequential interleaving. 

9 .What are the two basic strategies in the seventh optimization? [R-2013] 

Critical word first—Request the missed word first from memory and send it to the 

processor as soon as it arrives; let the processor continue execution while filling 

the rest of the words in the block. Early restart—Fetch the words in normal order, 

but as soon as the requested word of the block arrives, send it to the processor 
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Memory latency is traditionally quoted using two measures Access time is the time 

between when a read is requested and when the desired word arrives. 

Cycle time is the minimum time between requests. 

 
 

12. What does RAID stands for and what is JBOD? What is mirroring? 

[R-2013] 

RAID stands for redundant array of inexpensive disks. RAID0has no redundancy 

and is sometimes nicknamed JBOD, for “just a bunch of disks,” although the data 

may be striped across the disks in the array. 

RAID 1—Also called mirroring or shadowing, there are two copies of every piece of 

data 

 
 

 

SRAM DRAM 

SRAMs don’t need to refresh and so the 

access time is very close to the cycle 

time. 

DRAM need to be refreshed 

Capacity is low Capacity is 4-8 times of SRAM 

SRAM needs only minimal power to 

retain the charge in standby mode 

Need more power to retain the charge. 

SRAM designs are concerned with 

speed and capacity 

DRAM designs the emphasis is on cost 

per bit and capacity 

 
15. How RAID can improve the performance of I/O? [April/May 2015] 

RAID - Redundant Array of Inexpensive Disks, (now commonly Redundant Array of 

Independent Disks) is a data storage virtualization technology that combines 

multiple physical disk drive components into a single logical unit for the purposes 
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13. What is I/O bandwidth and latency and transaction time? [Nov/Dec 2014], 

[May/June 2014] 

I/O throughput is sometimes called I/O bandwidth, and response time is 

sometimes called latency. 

Transaction time is the sum of entry time , system response time and think time. 

14. Differentiate between SRAM AND DRAM [R-2013] 
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of data redundancy, performance improvement, or both. Thus improves I/O 

Performance. 

16. What are the types of storage devices ?(NOV/DEC 2016) 

 Magnetic Disk 

 Magnetic Tapes 

 CD-ROMs 

 Flash Memory 
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PART B 

 
 

1. Describe the need of cache optimization scheme. Give a description about 

schemes to reduce cache miss penalty and miss rate. [Apr/ May 2015], [Nov/ 

Dec 2014], [May/Jun 2014], [Nov/ Dec 2013] 

Cache performance 

The average memory access time is calculated as follows 

Average memory access time = hit time + Miss rate x Miss Penalty. 

Where Hit Time is the time to deliver a block in the cache to the processor (includes 

time to determine whether the block is in the cache), Miss Rate is the fraction of 

memory references not found in cache (misses/references) and Miss 

before write miss, merging write buffers, victim caches; 

2 Reducing the miss rate: larger block size, larger cache size, higher 

associativity, pseudo-associativity, and compiler optimizations; 

3 Reducing the miss penalty or miss rate via parallelism: nonblocking 

caches, hardware prefetching, and compiler prefetching; 

4 Reducing the time to hit in the cache: small and simple caches, avoiding 

address translation, and pipelined cache access. 

There are five optimizations techniques to reduce miss penalty. 
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Penalty is the additional time required because of a miss. 

The average memory access time due to cache misses predicts processor 

performance. 

 First, there are other reasons for stalls, such as contention due to I/O 

devices using memory and due to cache misses. 

 Second, The CPU stalls during misses, and the memory stall time is 

strongly correlated to average memory access time. 

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock 

cycle time 

There are 17 cache optimizations into four categories: 

1 Reducing the miss penalty: multilevel caches, critical word first, read miss 
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i) First Miss Penalty Reduction Technique: Multi-Level Caches 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

rateL2 × Miss penaltyL2) 

Local miss rate—This rate is simply the number of misses in a cache divided by 

the total number of memory accesses to this cache. As you would expect, for the 

first-level cache it is equal to Miss rateL1 and for the second-level cache it is Miss 

rateL2. 

Global miss rate—The number of misses in the cache divided by the total num- ber 

of memory accesses generated by the CPU. Using the terms above, the global miss 

rate for the first-level cache is still just Miss rateL1but for the second-level cache it is 

Miss rateL1 × Miss rateL2. 

Average memory stalls per instruction = Misses per instructionL1× Hit timeL2 + 
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The First Miss Penalty Reduction Technique follows the Adding another level 

of cache between the original cache and memory. The first-level cache can be small 

enough to match the clock cycle time of the fast CPU and the second- level cache 

can be large enough to capture many accesses that would go to main memory, 

thereby the effective miss penalty. 

The definition of average memory access time for a two-level cache. Using 

the subscripts L1 and L2 to refer, respectively, to a first-level and a second-level 

cache, the formula is 

Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1 

and Miss penaltyL1 = Hit timeL2 + Miss rateL2 × Miss penaltyL2 

so Average memory access time = Hit timeL1 + Miss rateL1× (Hit timeL2 + Miss 
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Misses per instructionL2 × Miss penaltyL2. 

Consider the parameters of second-level caches. The foremost difference 

between the two levels is that the speed of the first-level cache affects the clock rate 

of the CPU, while the speed of the second-level cache only affects the miss penalty 

of the first-level cache. 

Figures show how miss rates and relative execution time change with the size of 

a second-level cache for one design. 
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requested word first. 

Early restart—Fetch the words in normal order, but as soon as the requested word 

of the block arrives, send it to the CPU and let the CPU continue execution. 

iii) Third Miss Penalty Reduction Technique: Giving Priority to Read Misses 

over Writes 

This optimization serves reads before writes have been completed. We start with 

looking at complexities of a write buffer. With a write-through cache the most 

important improvement is a write buffer of the proper size. Write buffers, however, 

do complicate memory accesses in that they might hold the updated value of a 

location needed on a read miss. The simplest way out of this is for the read miss to 

wait until the write buffer is empty. The alternative is to check the contents of the 

write buffer on a read miss, and if there are no conflicts and the memory system is 

 

 

ii) Second Miss Penalty Reduction Technique: Critical Word First and Early 

Restart 

Multilevel caches require extra hardware to reduce miss penalty, but not this 

second technique. It is based on the observation that the CPU normally needs just 

one word of the block at a time. This strategy is impatience: Don’t wait for the full 

block to be loaded before sending the requested word and restarting the CPU. Here 

are two specific strategies: 

Critical word first—Request the missed word first from memory and send it to the 

CPU as soon as it arrives; let the CPU continue execution while filling the rest of the 

words in the block. Critical-word-first fetch is also called wrapped fetch and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

available, let the read miss continue. 

 
 

iv) Fourth Miss Penalty Reduction Technique: Merging Write Buffer 

This technique also involves write buffers, this time improving their efficiency. Write 

through caches rely on write buffers, as all stores must be sent to the next lower 

level of the hierarchy. As mentioned above, even write back caches use a simple 

buffer when a block is replaced. If the write buffer is empty, the data and the full 

address are written in the buffer, and the write is finished from the CPU's 

perspective; the CPU continues working while the write buffer prepares to write the 

word to memory. If the buffer contains other modified blocks, the addresses can be 

checked to see if the address of this new data matches the address of the valid 
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write buffer entry. If so, the new data are combined with that entry, called write 

merging. 

If the buffer is full and there is no address match, the cache (and CPU) must wait 

until the buffer has an empty entry. This optimization uses the memory more 

efficiently since multiword writes are usually faster than writes performed one word 

at a time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure: write buffer without write merging 

The optimization also reduces stalls due to the write buffer being full. Figure 

shows a write buffer with and without write merging. Assume we had four entries in 

the write buffer, and each entry could hold four 64-bit words. Without this 

optimization, four stores to sequential addresses would fill the buffer at one word 

per entry, even though these four words when merged exactly fit within a single entry 

of the write buffer. The four writes are merged into a single buffer entry with 

 

 

128 

Figure: write buffer with write merging 
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write merging; without it, the buffer is full even though three-fourths of each entry is 

wasted. 

The buffer has four entries, and each entry holds four 64-bit words. The address for 

each entry is on the left; with valid bits (V) indicating whether or not the next 

sequential eight bytes are occupied in this entry. (Without write merging, the words 

to the right in the upper drawing would only be used for instructions which wrote 

multiple words at the same time.) 

v) Fifth Miss Penalty Reduction Technique: Victim Caches 

One approach to lower miss penalty is to remember what was discarded in case it 

is needed again. Since the discarded data has already been fetched, it can be used 

again at small cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig: Placement of victim cache in the memory hierarchy 
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Such “recycling” requires a small, fully associative cache between a cache and its 

refill path. Figure shows the organization. This victim cache contains only blocks 

that are discarded from a cache because of a miss “victims” and are checked on a 

miss to see if they have the desired data before going to the next lower-level 

memory. If it is found there, the victim block and cache block are swapped. The AMD 

Athlon has a victim cache with eight entries. 
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Reducing cache miss penalty and miss rate 

The classical approach to improving cache behavior is to reduce miss rates, and 

there are five techniques to reduce miss rate. first start with a model that sorts all 

misses into three simple categories: 

Compulsory—The very first access to a block cannot be in the cache, so the block 

must be brought into the cache. These are also called cold start misses or first 

reference misses. 

Capacity—If the cache cannot contain all the blocks needed during execution of a 

program, capacity misses (in addition to compulsory misses) will occur be-cause of 

blocks being discarded and later retrieved. 

Conflict—If the block placement strategy is set associative or direct mapped, 
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conflict misses (in addition to compulsory and capacity misses) will occur be-cause 

a block may be discarded and later retrieved if too many blocks map to its set. These 

misses are also called collision misses or interference misses. The idea is that hits 

in a fully associative cache which become misses in an N-way set associative cache 

are due to more than N requests on some popular sets. 

i ) First Miss Rate Reduction Technique: Larger Block Size 

The simplest way to reduce miss rate is to increase the block size. Figure shows the 

trade-off of block size versus miss rate for a set of programs and cache sizes. Larger 

block sizes will reduce compulsory misses. This reduction occurs because the 

principle of locality has two components: temporal locality and spatial locality. Larger 

blocks take advantage of spatial locality. 
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ii) Second Miss Rate Reduction Technique: Larger 

caches 

The obvious way to reduce capacity misses in the above is to increases capacity of 

the cache. The obvious drawback is longer hit time and higher cost. This technique 

has been especially popular in off-chip caches: The size of second or third level 

caches in 2001 equals the size of main memory in desktop computers. 

iii) Third Miss Rate Reduction Technique: Higher Associativity: 

Generally the miss rate improves with higher associativity. There are two general 

rules of thumb that can be drawn. The first is that eight-way set associative is for 

practical purposes as effective in reducing misses for these sized caches as fully 
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Fig: Miss rate versus block size for five different-sized caches 

At the same time, larger blocks increase the miss penalty. Since they reduce the 

number of blocks in the cache, larger blocks may increase conflict misses and even 

capacity misses if the cache is small. Clearly, there is little reason to increase the 

block size to such a size that it increases the miss rate. There is also no benefit to 

reducing miss rate if it increases the average memory access time. The 

increase in miss penalty may outweigh the decrease in miss rate. 
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associative. You can see the difference by comparing the 8-way entries to the 

capacity miss, since capacity misses are calculated using fully associative cache. 

iv) Fourth Miss Rate Reduction Technique: Way Prediction and Pseudo- 

Associative Caches 

In way-prediction, extra bits are kept in the cache to predict the set of the next cache 

access. This prediction means the multiplexer is set early to select the desired set, 

and only a single tag comparison is performed that clock cycle. A miss results in 

checking the other sets for matches in subsequent clock cycles. 

The Alpha 21264 uses way prediction in its instruction cache. (Added to each 

block of the instruction cache is a set predictor bit. The bit is used to select which of 

the two sets to try on the next cache access. If the predictor is correct, the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some programs have nested loops that access data in memory in non- 

sequential order. Simply exchanging the nesting of the loops can make the code 

access the data in the order it is stored. Assuming the arrays do not fit in cache, this 

technique reduces misses by improving spatial locality; reordering maximizes use 

of data in a cache block before it is discarded. 

/* Before */ 

for (j = 0; j < 100; j = j+1) 

for (i = 0; i < 5000; i = i+1) 

x[i][j] = 2 * x[i][j]; 

 
/* After */ 
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instruction cache latency is one clock cycle. If not, it tries the other set, changes 

the set predictor, and has a latency of three clock cycles. 

v) Fifth Miss Rate Reduction Technique: Compiler Optimizations 

Code can easily be rearranged without affecting correctness; for example, 

reordering the procedures of a program might reduce instruction miss rates by 

reducing conflict misses. Reordering the instructions reduced misses by 50% for a 

2-KB direct-mapped instruction cache with 4-byte blocks, and by 75% in an 8-KB 

cache. 

Another code optimization aims for better efficiency from long cache blocks. 

Aligning basic blocks so that the entry point is at the beginning of a cache block 

decreases the chance of a cache miss for sequential code. 

Loop Interchange: 
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for (i = 0; i < 5000; i = i+1) 

for (j = 0; j < 100; j = j+1) 

x[i][j] = 2 * x[i][j]; 

 
This optimization improves cache performance without affecting the number of 

instructions executed. 

 
2.(i) Discuss in detail about various hit time reduction techniques to improve 

cache performance. [Nov/ Dec 2013] 

Reducing hit time 

 On many machines, cache access time limits the clock cycle rate ! 
 

 

 
 

o Fitting the cache on the chip with the CPU is also very important for fast 

access times. 

 
o Therefore, fast clock cycle time encourages small direct-mapped caches. 

2.(i)Avoid address translation during indexing 

o The CPU uses virtual addresses that must be mapped to a physical 

address. 

 
o The cache may either use virtual or physical addresses. 
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 Therefore, cache design affects more than average memory access time, it 

affects everything. 

Small& simple caches 

The less hardware that is necessary to implement a cache, the shorter the 

critical path through the hardware. 

Direct-mapped is faster than set associative for both reads and writes. 

In particular, tag checking can overlap data 

transmission (there is only one piece of data for each 

index). 
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 A cache that indexes by virtual addresses is called 

a virtual cache, as opposed to a physical cache. 

 
o A virtual cache reduces hit time since a translation from a virtual address to 

a physical address is not necessary on hits. 

 
o Also, address translation can be done in parallel with cache access, so 

penalties for misses are reduced as 

 
 
 
 
 
 

o Virtual cache difficulties include: 

 Process switches require cache purging 

o In virtual caches, different processes share the same virtual addresses 

even though they map to different physical addresses. 

 
o When a process is swapped out, the cache must be purged of all entries to 

make sure that the new process gets the correct data. 

 One solution: PID tags 

 Increase the width of the cache address tags to include a 

process ID (instead of purging the cache.) 

 The current process PID is specified by a register. 
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Fig: Virtually Addressed Cache 

2(ii).Avoid address translation during indexing with physical portion of 

address 
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 If the PID does not match, it is not a hit even if the address 

matches. 

21 12 11 0 
 

Page Address Page offset 

Address Lag Index Block offset 

Figure: Page address and Page offset 

o Virtual cache difficulties include: 

Aliasing Two different virtual addresses may have the same 

physical address. 

 
o In such a case, it is possible to end up with two copies of the same block! 

 

bits) or smaller can never have duplicate physical addresses for blocks. 

(iii)Using the page offset 

 
An alternative to get the best of both virtual and physical caches. 

 
 

o If we use the page offset to index the cache, then we can overlap the virtual 

address translation process with the time required to read the tags. 

 
o Note that the page offset is unaffected by address translation. 
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Solution to aliasing 

(i)Anti-aliasing hardware 

A hardware solution called anti-aliasing guarantees every cache block a 

unique physical address. 

Every virtual address maps to the same location in the 

cache. 

(ii)Page coloring 

This software technique forces aliases to share some address bits. 

Therefore, the virtual address and physical address 

match over these bits. 

A direct-mapped cache that is 2 k bytes (where k is the number of matching 

http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

o However, this restriction forces the cache size to be smaller than the page 

size. 

 Since the index comes only from the "physical" portion 

of the virtual address (the page offset). 

 
o After doing both in parallel, the tag is checked against the physical address 

stored in the cache. 

o High associativity allows for larger cache sizes. 

3. Pipelined writes 

o Write hits take longer than read hits because tag checking is required 

before the data is written. 

during the first stage of the next write. 

o Allows tag checking and data writing to occur simultaneously. 

 

4. Fast Writes on Misses via Small Subblocks 

 If most writes are 1 word, subblock size is 1 word, & write through then 

always write subblock& tag immediately 

o Tag match and valid bit already set: Writing the block was proper,& 

nothing lost by setting valid bit on again. 

o Tag match and valid bit not set: The tag match means that this is the 

proper block; writing the data into the subblock makes it appropriate to 

turn the valid bit on. 
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One solution is to pipeline the writes (Alpha AXP 

21064): 

The second stage of the write (cache is updated with new data) occurs 
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— The CPU 

— The memory system: 

– Internal and external caches, Main Memory 

— The underlying interconnection (buses) 

— The I/O controller 

— The I/O device 

— The speed of the I/O software (Operating System) 

— The efficiency of the software’s use of the I/O devices 

• Two common performance metrics: 

— Throughput: I/O bandwidth 

— Response time: Latency 

• Throughput (I/O processes per second) 

o Tag mismatch: This is a miss and will modify the data portion of the block. 

As this is a write-through cache, however, no harm was done; memory 

still has an up-to-date copy of the old value. Only the tag to the address 

of the write and the valid bits of the other subblock need be changed 

because the valid bit for this subblock has already been set 

 
(ii) Elaborate on different methods to measure the performance of I/O.[Apr/ 

May 2015], [May/Jun 2014], [May/Jun 2013] 

I/O PERFORMANCE: 

• I/O System performance depends on many aspects of the system (“limited 

by weakest link in the chain”): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

— Useful for file serving and transaction processing 

• Latency - total time for an I/O process from start to finish 

— Most important to users 

—  Latency = controller time + wait time + (NumOfBytes / bandwidth ) + 

CPU time – overlap 

Simple – Producer Server Model 
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Throughput Vs Respond Time 
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Throughput Enhancement 
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Response Time Vs Productivity 
 
 
 
 
 

 

 Main memory is usually made from DRAM while caches use SRAM. 

 SRAM is faster (by almost an order of magnitude). 

 However, it's also more expensive per bit and 1/4 to 1/8 as 

dense as DRAM (1 transistor versus 6 transistors). 

 We now turn to optimizing DRAM performance. 

 Performance measures include: 

o Latency 

 Important for caches. 

o Bandwidth 

 Important for I/O. 
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3. How will you improve the main memory performance? 

Main Memory 
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o DRAMs must occasionally refresh their data. 

 This is done by reading all of the cells in a row and 

writing them back. 

o This must be done every few milliseconds. 

o However, this operation consumes less than 5% of total time. 

o This is true because the time necessary to refresh is 

proportional to the square root of the size of the DRAM. 

o Amdahl suggested that memory capacity should grow linearly 

with CPU speed. 

o Memory capacity grows four-fold every three years to 

supply this demand. 

 The CPU-DRAM performance gap is a problem, however, since 

 Also for cache with second-level and larger block sizes. 

Improving Main Memory Performance 

Latency measures: 

 Access time 

o Time between when a read is requested and when the 

desired word arrives. 

 Cycle time 

o This is the minimum time between the starts of two accesses 

to memory. 

o This is at least as long as access time, and is usually longer. 

 Refresh time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DRAM performance improvement is only about 7% per year. 

o Cache innovations have addressed this problem to some 

degree. 

o We will now look at innovations in main memory 

organizations that are more cost effective. 
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(i) Wider main memory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 40 cycles to access memory. 

 4 cycles to transfer over the bus. 

o If the memory is only one word wide, a miss would require 4 x (4 + 

40 + 4) = 192 cycles! 

o If the memory is enlarged to 4 words wide, miss time is only 48 

cycles. 
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o DRAM chips are typically 1-8 bits wide. 

 Any number of them can be accessed in parallel without extra 

delay. 

 By increasing the width of memory, the CPU can get more bits in a 

single cycle. 

o This increases bandwidth between cache and memory. 

o For example, consider a cache with 4 word blocks. 

o Main memory might require: 

 4 cycles to send the address. 

http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/


 

 

 

 

 
 
 
 

 

(ii) Interleaved memory 
 
 
 
 
 
 
 
 
 
 
 
 

 

limitations) but it has several advantages. 

 
 

o Individual writes can also be overlapped if they are addressed to different 

banks. 

 
o One possible interleaving strategy: Word interleaving : 
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 Banks are often one word wide, so bus width need not be changed. 

o However, several independent areas of memory can be accessed 

simultaneously. 

o For example, we could fetch a block by 

 Sending 1 address. 

 Waiting for a single memory cycle. 

 Transferring 4 words for a total time of 4 + 40 + (4 x 4) = 60 cycles. 

 Which is a little slower than wider memory (due to bus 
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o Read access optimization is possible if, for example, cache block size is four 

words since parallel access is possible (no conflicts). 

o Also, write-back caches make writes sequential as well as reads, improving 

efficiency even further. 

o How many banks are sufficient? 

 One rule might be `# of banks >= # of clocks to access a word in a 

independent requests serviced simultaneously. 

o This can be particularly useful with nonblocking caches (caches that allow 

multiple outstanding reads misses). 

o And multiprocessors. 
 

 

(iv)Avoiding memory bank conflicts 

o As with caches, programs can be modified to improve memory performance. 

 The most important is to keep all the banks running. 
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bank'. 

 This allows up to 1 word per clock cycle in best case. 

(iii) Independent memory banks 

oThe interleaved memory concept can be extended to remove all restrictions on 

memory access. 

 We assumed for interleaved memory that only a single memory 

controller was present. 

 This allowed the interleaving of sequential access patterns. 

 Address line sharing among the banks is possible in this scheme. 

oWe can also use multiple independent controllers, e.g. one for I/O devices, 

one for cache reads and one for cache writes. 

 Banks are still accessed in parallel, but now there may be multiple 
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o Programs that access all banks evenly will perform best. 

 However, data memory references are not random and may end up 

going to the same bank. 

o Using a prime number of memory banks makes this work well. 

 However, using a prime number makes the division operation 

expensive: 

o There are schemes that use a prime number of banks and fast modulo arithmetic 

to distribute memory accesses to many banks of memory. 

 
 

 We now look at techniques that take advantage of the nature of DRAMs. 

 The first three take advantage of the individual row access and column 

access operations that occur on a memory access. 

o DRAMs buffer a row of bits inside the DRAM for column access. 

o The size of the buffer is usually the square root of the DRAM size, 

e.g. 16Kbits for 64MBits. 

o In order to improve performance, DRAMs are designed to allow 

multiple accesses to this buffer, eliminating the row access time. 
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For example, the following can be used: 

This avoids the use of an expensive `non power of 2' division operation shown 

previously. 

There is a proof that guarantees that the above mapping provides a unique 

mapping between an address and a memory location. 

For numbers of the form 2 N -1, there is fast hardware to implement the 

operation. 

DRAM-specific interleaving 

The previous methods work with any memory technology. 
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DRAM Logical Organization 
 

 

DRAM Physical Organization 
 
 

 Nibble mode 

 
 
 
 
 
 

 Page mode 

 

o The DRAM can supply three extra bits from locations 

sequential to the one just accessed. 

o This can be done after each RAS (Row Access 

Strobe). 

 
o The DRAM can act as an SRAM once a row has been 

selected. 
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o For example, random bits from the row can be 

selected by changing just the column address. 

o This can occur until the next RAS or refresh. 

 Static column mode (Extended Data Out [ EDO ] RAM) 

o Very similar to page mode, except that it is not 

necessary to toggle (clock) the column access strobe 

line every time the column address changes. 

 These optimizations can improve bandwidth by a factor of four . 

 Synchronous DRAM (SDRAM) 

o In this type of DRAM, the clock is supplied to the RAM 

chip, and all signals are synchronized to it. 

 
 

An innovation that improves both dependability and performance of storage 

systems is disk arrays. One argument for arrays is that potential throughput can be 

increased by having many disk drives and, hence, many disk arms, rather than one 

large drive with one disk arm. Although a disk array would have more faults than a 

smaller number of larger disks when each disk has the same reliability, dependability 

can be improved by adding redundant disks to the array to tolerate faults. That is, if 

a single disk fails, the lost information can be reconstructed from redundant 

information. 

The only danger is in having another disk fail between the time the first disk 

fails and the time it is replaced (termed mean time to repair, or MTTR). Since the 

mean time to failure (MTTF) of disks is tens of years, and the MTTR is measured 
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This allows the RAM to run at higher speeds. 

Similarly, sequential data can be retrieved faster, at 

the rate of one bit per clock cycle. 

VRAM 

Video RAM is used to drive displays. 

It can be written or read using a normal interface or a 

special interface that outputs rows one bit at a time 

(good for video displays!). 

4. Explain RAID architecture in detail and its various levels. [May/Jun 2014], 

[Nov/ Dec 2013], [May/Jun 2013] 
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Figure shows the standard RAID levels. It shows how eight disks of user data 

must be supplemented by redundant or check disks at each RAID level. It also 

shows the minimum number of disk failures that a system would survive. 

in hours, redundancy can make the measured reliability of 100 disks much higher 

than that of a single disk. These systems have become known by the acronym RAID, 

stand-ing originally for redundant array of inexpensive disks, although some have 

re-named it to redundant array of independent disks 

The several approaches to redundancy have different overhead and 

performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RAID level Minimum 

number 

of Disk 

faults 

survived 

Example 

Data 

disks 

Corresponding 

Check disks 

Corporations 

producing RAID 

products at this level 

0 Non-redundant 

striped 
0 8 0 Widely used 

1 Mirrored 1 8 8 
EMC, Compaq 

(Tandem), IBM 

2 Memory-style 

ECC 
1 8 4 

 

3 Bit-interleaved 

parity 
1 8 1 Storage Concepts 

4 Block- 

interleaved parity 
1 8 1 Network Appliance 

5 Block- 

interleaved 

1 8 1 Widely used 
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distributed parity     

6 P+Q 

redundancy 
2 8 2 

 

FIGURE RAID levels, their fault tolerance, and their overhead in redundant disks. 

No Redundancy (RAID 0) 

This notation is refers to a disk array in which data is striped but there is no 

redundancy to tolerate disk failure. Striping across a set of disks makes the 

collection appear to software as a single large disk, which simplifies storage 

management. It also improves performance for large accesses, since many disks 

can operate at once. Video editing systems, for example, often stripe their data. 

RAID 0 something of a misnomer as there is no redundancy, it is not in the 
 

(“striped mirrors”) and the latter RAID 0+1 or RAID 01 (“mirrored stripes”). 

Bit-Interleaved Parity (RAID 3) 

The cost of higher availability can be reduced to 1/N, where N is the number 

of disks in a protection group. Rather than have a complete copy of the original data 

for each disk, we need only add enough redundant information to restore the lost 

information on a failure. Reads or writes go to all disks in the group, with one extra 

disk to hold the check information in case there is a failure. RAID 3 is popular in 

applications with large data sets, such as multimedia and some scientific codes. 

Parity is one such scheme. Readers unfamiliar with parity can think of the 

redundant disk as having the sum of all the data in the other disks. When a disk 
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original RAID taxonomy, and striping predates RAID. However, RAID levels are 

often left to the operator to set when creating a storage system, and RAID 0 is often 

listed as one of the options. Hence, the term RAID 0 has become widely used. 

Mirroring (RAID 1) 

This traditional scheme for tolerating disk failure, called mirroring or 

shadowing, uses twice as many disks as does RAID 0. Whenever data is written to 

one disk, that data is also written to a redundant disk, so that there are always two 

copies of the information. If a disk fails, the system just goes to the “mirror” to get 

the desired information. Mirroring is the most expensive RAID solution, since it 

requires the most disks. 

The RAID terminology has evolved to call the former RAID 1+0 or RAID 10 
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fails, then you subtract all the data in the good disks from the parity disk; the 

remaining information must be the missing information. Parity is simply the sum 

modulo two. The assumption behind this technique is that failures are so rare that 

taking longer to recover from failure but reducing redundant storage is a good trade-

off. 

Block-Interleaved Parity and Distributed Block-Interleaved Parity (RAID 4 and RAID 

5) 

In RAID 3, every access went to all disks. Some applications would prefer to do 

smaller accesses, allowing independent accesses to occur in parallel. That is the 

purpose of the next RAID levels. Since error-detection information in each sector is 

checked on reads to see if data is correct, such “small reads” to each disk can 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure: Data distribution in RAID 4 
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occur independently as long as the minimum access is one sector. 

Writes are another matter. It would seem that each small write would demand that 

all other disks be accessed to read the rest of the information needed to recalculate 

the new parity, as in Figure. A “small write” would require reading the old data and 

old parity, adding the new information, and then writing the new parity to the parity 

disk and the new data to the data disk. 

RAID 4 efficiently supports a mixture of large reads, large writes, small reads, and 

small writes. One drawback to the system is that the parity disk must be updated n 

every write, so it is the bottleneck for back-to-back writes. To fix the parity-write 

bottleneck, the parity information can be spread throughout all the disks so that there 

is no single bottleneck for writes. The distributed parity organization is RAID 5. 
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Fig: Data distribution in RAID4 vs Raid5 

Figure shows how data are distributed in RAID 4 vs. RAID 5. As the organization on 

the right shows, in RAID 5 the parity associated with each row of data blocks is no 

longer restricted to a single disk. This organization allows multiple writes to occur 

simultaneously as long as the stripe units are not located in the same disks. 

 

 
 

Figure: Data distribution in RAID 5 
 

 
 
 
 
 
 

 
For example, a write to block 8 on the right must also access its parity block P2, 

thereby occupying the first and third disks. A second write to block 5 on the right, 

implying an update to its parity block P1, accesses the second and fourth disks and 

thus could occur at the same time as the write to block 8. Those same writes to the 

organization on the left would result in changes to blocks P1 and P2, both on the 

fifth disk, which would be a bottleneck. 

P+Q redundancy (RAID 6) 

Parity based schemes protect against a single, self-identifying failures. When 

a single failure is not sufficient, parity can be generalized to have a second 

calculation over the data and another check disk of information. Yet another parity 

block is added to allow recovery from a second failure. Thus, the storage overhead 
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server for the Fine Arts Museums of San Francisco. This database consists of high 

quality images of over 70,000 art works. The database was stored on a cluster, 

which consisted of 20 PCs containing 368 disks connected by a switched Ethernet. 

It occupied in seven 7-foot high racks. 

is twice that of RAID 5. The small write shortcut of Figure works as well, except now 

there are six disk accesses instead of four to update both P and Q information. 

Errors and Failures in Real Systems 

Publications of real error rates are rare for two reasons. First academics rarely 

have access to significant hardware resources to measure. Second industrial, 

researchers are rarely allowed to publish failure information for fear that it would be 

used against their companies in the marketplace. Below are four exceptions. 

Berkeley’s Tertiary Disk 

The Tertiary Disk project at the University of California created an art-image 
 
 
 
 
 
 
 
 

Component 
Total in 
System 

Total 
Failed 

% Failed 

SCSI Controller 44 1 2.3% 

SCSI Cable 39 1 2.6% 

SCSI Disk 368 7 1.9% 

IDE Disk 24 6 25.0% 

Disk Enclosure - 
Backplane 

46 13 28.3% 

Disk Enclosure - Power 
Supply 

92 3 3.3% 

Ethernet Controller 20 1 5.0% 

Ethernet Switch 2 1 50.0% 

Ethernet Cable 42 1 2.3% 

CPU/Motherboard 20 0 0% 

FIGURE Failures of components in Tertiary Disk over eighteen months of 

operation. 

 
Figure shows the failure rates of the various components of Tertiary Disk. In 

advance of building the system, the designers assumed that data disks would be 

the least reliable part of the system, as they are both mechanical and plentiful. As 

Tertiary Disk was a large system with many redundant components, it had the 
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potential to survive this wide range of failures. Components were connected and 

mirrored images were placed no single failure could make any image unavailable. 

This strategy, which initially appeared to be overkill, proved to be vital. 

This experience also demonstrated the difference between transient faults 

and hard faults. Transient faults are faults that come and go, at least temporarily 

fixing themselves. Hard faults stop the device from working properly, and will 

continue to misbehave until repaired. 

Tandem 

The next example comes from industry. Gray [1990] collected data on faults for 

Tandem Computers, which was one of the pioneering companies in fault tolerant 

computing. Figure 7.21 graphs the faults that caused system failures between 

 
 
 
 
 
 
 
 
 

 

1985 1987 1989 
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1985 and 1989 in absolute faults per system and in percentage of faults 

encountered. The data shows a clear improvement in the reliability of hardware and 

maintenance. Disks in 1985 needed yearly service by Tandem, but they were re-

placed by disks that needed no scheduled maintenance. Shrinking number of chips 

and connectors per system plus software’s ability to tolerate hardware faults 

reduced hardware’s contribution to only 7% of failures by 1989. And when hardware 

was at fault, software embedded in the hardware device (firmware) was often the 

culprit. The data indicates that software in 1989 was the major source of reported 

outages (62%), followed by system operations (15%). 
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operator fault. Note that the hardware/operating system went from causing 70% of 

the failures in 1985 to 28% in 1993. Murphy and Gent expected system 

management to be the primary dependability challenge in the future. 
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The problem with any such statistics is that these data only refer to what is 

reported; for example, environmental failures due to power outages were not 

reported to Tandem because they were seen as a local problem. 

VAX 

The next example is also from industry. Murphy and Gent [1995] measured 

faults in VAX systems. They classified faults as hardware, operating system, system 

management, or application/networking. Figure 7.22 shows their data for 1985 and 

1993. They tried to improve the accuracy of data on operator faults by having the 

system automatically prompt the operator on each boot for the reason 

for that reboot. They also classified consecutive crashes to the same fault as 
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FCC 

The final set of data comes from the government. The Federal 

Communications Commission (FCC) requires that all telephone companies submit 

explanations when they experience an outage that affects at least 30,000 people or 

lasts thirty minutes. These detailed disruption reports do not suffer from the self- 

reporting problem of earlier figures, as investigators determine the cause of the 

outage rather than operators of the equipment. Kuhn [1997] studied the causes of 

outages between 1992 and 1994 and Enriquez [2001] did a follow-up study for the 

 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

first half of 2001. In addition to reporting number of outages, the FCC data includes 

the number of customers affected and how long they were affected. Hence, we can 

look at the size and scope of failures, rather than assuming that all are equally 

important. Figure 7.23 plots the absolute and relative number of customer-outage 

minutes for those years, broken into four categories: 

 Failures due to exceeding the network’s capacity (overload). 

 Failures due to people (human). 

 Outages caused by faults in the telephone network software (software). 

 Switch failure, cable failure, and power failure (hardware). 

These four examples and others suggest that the primary cause of failures 

in large systems today is faults by human operators. Hardware faults have 
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declined due to a decreasing number of chips in systems, reduced power, and fewer 

connectors. Hardware dependability has improved through fault tolerance 

techniques such as RAID. At least some operating systems are considering 

reliability implications before new adding features, so in 2001 the failures largely 

occur elsewhere. 

 
5.Explain in detail about the types of storage devices. [May/Jun 2014] 

Types of Storage Devices 

There are various types of Storage devices such as magnetic disks, 

magnetic tapes, automated tape libraries, CDs, and DVDs. 

The First Storage device magnetic disks have dominated nonvolatile 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure: Disks are organized into platters , tracks and sectors 

A magnetic disk consists of a collection of platters (generally 1 to 12), rotating 

on a spindle at 3,600 to 15,000 revolutions per minute (RPM). These platters are 
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storage since 1965. Magnetic disks play two roles in computer systems: 

 Long Term, nonvolatile storage for files, even when no programs are 

running 

 A level of the memory hierarchy below main memory used as a backing 

store for virtual memory during program execution. 
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read/ write head is located over each surface. To read or write a sector, the disk 

controller sends a command to move the arm over the proper track. This operation 

is called a seek, and the time to move the arm to the desired track is called seek 

time. 

Average seek time is the subject of considerable misunderstanding. Disk 

manufacturers report minimum seek time, maximum seek time, and average seek 

time in their manuals. The first two are easy to measure, but the average was open 

to wide interpretation. 

The time for the requested sector to rotate under the head is the rotation 

latency or rotational delay. The average latency to the desired information is 

obviously halfway around the disk; if a disk rotates at 10,000 revolutions per minute 

(RPM), the average rotation time is therefore 

metal or glass disks covered with magnetic recording material on both sides, so 10 

platters have 20 recording surfaces. 

The disk surface is divided into concentric circles, designated tracks. There are 

typically 5,000 to 30,000 tracks on each surface. Each track in turn is divided into 

sectors that contain the information; a track might have 100 to 500 sectors. A sector 

is the smallest unit that can be read or written. IBM mainframes allow users to select 

the size of the sectors, although most systems fix their size, typically at 512 bytes of 

data. The sequence recorded on the magnetic media is a sector number, a gap, the 

information for that sector including error correction code, a gap, the sector number 

of the next sector, and so on. 

To read and write information into a sector, a movable arm containing a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Average Rotation Time = 0.5/10,000RPM = 0.5/(10,000/60)RPM = 3.0ms 

The next component of disk access, transfer time, is the time it takes to 

transfer a block of bits, typically a sector, under the read-write head. This time is a 

function of the block size, disk size, rotation speed, recording density of the track, 

and speed of the electronics connecting the disk to computer. Transfer rates in 2001 

range from 3 MB per second for the 3600 RPM, 1-inch drives to 65 MB per second 

for the 15000 RPM, 3.5-inch drives. 

The Future of Magnetic Disks 

The disk industry has concentrated on improving the capacity of disks. 

Improvement in capacity is customarily expressed as improvement in areal density, 

measured in bits per square inch: 
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Both the CD-ROM and DVD-ROM are removable and inexpensive to manufacture, 

but they are read-only mediums. These 4.7-inch diameter disks hold 0.65 and 4.7 

GB, respectively, although some DVDs write on both sides to double their capacity. 

Their high capacity and low cost have led to CD-ROMs and DVD-ROMs replacing 

floppy disks as the favorite medium for distributing software and other types of 

computer data. 

The popularity of CDs and music that can be downloaded from the WWW led 

to a market for rewritable CDs, conveniently called CD-RW, and write once CDs, 

called CD-R. In 2001, there is a small cost premium for drives that can record on 

CD-RW. The media itself costs about $0.20 per CD-R disk or $0.60 per CD-RW 

disk. CD-RWs and CD-Rs read at about half the speed of CD-ROMs and CD-RWs 

and CD-Rs write at about a quarter the speed of CD-ROMs. 

Areal Density = (Tracks/Inch) on a disk surface X (Bits/Inch) on a track 

 
 

Through about 1988 the rate of improvement of areal density was 29% per year, 

thus doubling density every three years. Between then and about 1996, the rate 

improved to 60% per year, quadrupling density every three years and matching 

the traditional rate of DRAMs. From 1997 to 2001 the rate increased to 100%, or 

doubling every year. In 2001, the highest density in commercial products is 20 

billion bits per square inch, and the lab record is 60 billion bits per square inch. 

Optical Disks: 

One challenger to magnetic disks is optical compact disks, or CDs, and its 

successor, called Digital Video Discs and then Digital Versatile Discs or just DVDs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Magnetic Tape: 

Magnetic tapes have been part of computer systems as long as disks because 

they use the similar technology as disks, and hence historically have followed the 

same density improvements. The inherent cost/performance difference between 

disks and tapes is based on their geometries: 

 Fixed rotating platters offer random access in milliseconds, but disks have a 

limited storage area and the storage medium is sealed within each reader. 

 Long strips wound on removable spools of “unlimited” length mean many 

tapes can be used per reader, but tapes require sequential access that can 

take seconds. 

One of the limits of tapes had been the speed at which the tapes can spin 
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without breaking or jamming. A technology called helical scan tapes solves this 

problem by keeping the tape speed the same but recording the information on a 

diagonal to the tape with a tape reader that spins much faster than the tape is 

moving. This technology increases recording density by about a factor of 20 to 50. 

Helical scan tapes were developed for low-cost VCRs and camcorders, which 

brought down the cost of the tapes and readers. 

Automated Tape Libraries 

Tape capacities are enhanced by inexpensive robots to automatically load 

and store tapes, offering a new level of storage hierarchy. These near line tapes 

mean access to terabytes of information in tens of seconds, without the intervention 

of a human operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that Flash restricts write to multi-kilobyte blocks, increasing memory capacity per 

chip by reducing area dedicated to control. Compared to disks, Flash memories offer 

low power consumption (less than 50 milliwatts), can be sold in small sizes, and 

offer read access times comparable to DRAMs. In 2001, a 16 Mbit Flash memory 

has a 65 ns access time, and a 128 Mbit Flash memory has a 150 ns access time. 
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Flash Memory 

Embedded devices also need nonvolatile storage, but premiums placed on 

space and power normally lead to the use of Flash memory instead of magnetic 

recording. Flash memory is also used as a rewritable ROM in embedded systems, 

typically to allow software to be upgraded without having to replace chips. 

Applications are typically prohibited from writing to flash memory in such 

circumstances. 

Like electrically erasable and programmable read-only memories 

(EEPROM), Flash memory is written by inducing the tunneling of charge from 

transistor gain to a floating gate. The floating gate acts as a potential well which 

stores the charge, and the charge cannot move from there without applying an 

external force. The primary difference between EEPROM and Flash memory is 
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EC6009-ADVANCE COMPUTER ARCHITECTURE 

(Regulation 2013) 

 
 

PART A - (10*2=20 marks) 

 
1. Define spatial and temporal locality. 

2. What is dependability. 

3. List the major advantage of dynamic scheduling using tomasulo's approach. 

4. What is data hazards. 

5. What are the omissions in the SIMD extension instruction set. 

6. Describe the similarities and difference between multimedia SIMD computer and 

GPU.. 

7. What is multicore architecture. 

8. What are the major disadvantage of DSM architecture? 

10. Explain the need to implement memory as a hierarchy 

 
 

PART B – (5*13=65 Marks) 
 

11.(a) (i) Explain in detail about trends in power and energy on IC with suitable 
example.. 

OR 
(b) Discuss about the guideline and principle that are useful in design and 

evaluate the performance of computer system with example. 
 

12. (a) (i) Describe the basic compiler techniques for exploiting instruction level 
parallel (10) 

(ii) Briefly compare the hardware and software speculations? (6) 
 

OR 
(b) (i) Explain the method of exploiting LIP and VLIW processor. (8) 

(ii) Discuss the important limitation of ILP. (8) 
 

13.(a) (i) Explain data level parallelism in Vector architecture in detail. 
 

OR 
(b) Discuss GPU architecture with neat diagram. 

 
(16) 

 
 

(16) 
 

14.(a) With neat diagram explain the distributed shared memory architecture . 
(16) 

OR 

(b) (i) Explain about synchronization techniques with example. (10) 
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(ii) Discuss about models of memory consistency. (6) 

 
 

15. (a) Discuss various basic cache optimization techniques with example. 
OR 

(b) (i) Briefly describe about various RAID levels with diagram. (8) 
(ii) List and explain various I/O Performance measure. (8) 
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Electronics and Communication Engineering 

EC 6009 – ADVANCED COMPUTER ARCHITECTURE 

(Regulation 2013) 

 
 

Answer all Questions 

PART A (10 * 2 = 20) 

 
1. What are the five trends in computer Technology ? 

2. How to find the cost of an integrated circuits ? 

3. Explain the idea behind dynamic scheduling. 

4. Give an example for data dependence. 

5. Differentiate GPU and CPU. 

6. What are the primary components of instruction set architecture of VMIPS? 

7. List the methods for providing synchronization in threads. 

8. Define sequential consistency. 

9. List the six basic optimizations techniques of cache. 

10. What are the types of storage Devices? 

 

 
PART B (5*16=80) 

11. (a) Write short notes on energy and power consumption in a 

microprocessor (16) 

(or) 

(b)Discuss the performance evaluation methods of different computers(16) 

 

 
12. (a) (i) Explain the types of dependencies in ILP (8) 

(ii) explain the compilation techniques that can be used to expose 

instruction level parallelism.(8) 

(or) 

(b) (i) Explain dynamic scheduling. Explain how it is used to reduce data 

hazards. (8) 

(ii) Define Multithreading. Explain how ILP is achieved using 

multithreading with an example (8) 

 
13. (a) Discuss similarities and difference between vector architecture and 

GPUs (16) 

(or) 

(b) Explain detecting and enhancing loop level parallelism in details.(16). 
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14. (a) Describe distributed shared memory architecture in detail (16). 

(or) 

(b) Explain Models of memory consistency in details (16). 

 

 
15. (a) Explain the categories of misses and how will u reduce the cache miss 

rate (16) 

(or) 

(b) (i) Explain the various ways to measure I/O processor (8) 

(ii) Explain the various levels of RAID (8) 
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3. Difference between VLIW and EPIC Processor. 

4. Briefly describe about the Register Stack Mechanism in IA -64 Register model. 

5. What is the use of branch prediction buffer? 

6. Write a note on multiprocessor cache coherence. 

7. Point out how RAID can improve the performance of I/O 

8 What is the need to implement memory as a hierarchy? 

9. Enlist the features of SMT architecture. 

10. Point out the advantage and disadvantage of hetrogeneous multi-core 

processor. 

PART B- (5*16=80 Marks) 

11. A) Explain how computer technology can be used to enhance a processor 

ability to exploit ILP. 

Question Paper Code:71393 

B.E/B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015 

Sixth Semester 

CS 2354/CS 64/10144/CS 604 - ADVANCED COMPUTER ARCHITECTURE 

Regulation 2008/2010 

Time: 3 Hours Maximum 

: 100 marks 

Answer ALL Questions 

Part A (10*2= 20 marks) 

1. Briefly describe data Hazards. 

2. Point out the different type of data dependences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
OR 

B) what are the different way for branch prediction? Describe how pipeline 

performance issues can be reduced by branch prediction. 

12) A) Discuss about Itanium processor and its IA 64 instruction set architecture. 

OR 

B) What is speculative execution? Compare and contrast hardware and software 

speculation mechanisms. 

13) a) Discuss in detail about the performance issues in symmetric and distributed 

shared memory architectures, 

OR 

b) What is the need for Memory consistency model? Explain its various types. 
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14. a) Describe the need for cache optimization schemes. Give a description about 

the advanced cache optimization schemes to reduce cache miss penalty and miss 

rate. 

OR 

b)) Elaborate on the difference methods to measure the performance ofI/O. 

15) a) Compare and Contrast Intel Multi core architecture and SUN CMP 

architecture. 

OR 

B) What is hardware multithreading ? Compare and contrast Fine grained Multi- 

Treading and Coarse grained Multi- Treading. 
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total of 8K bits in prediction buffer. 

3. List down the issues in the design of simultaneous multithreaded processor. 

4. What is the key features in the microarchitecture of Itanium 2.. 

5. What do you mean by Multitreading? 

6. Define sequential consistency. 

7. Suppose you want to achieve a speedup of 80 with 100 processors. What 

fraction of the original computation can be sequential? 

8 Define Transaction time? 

9. What do you mean by hyperthreading. 

10. Define SMT. 

PART B- (5*16=80 Marks) 

11. A) Describe the types of optimization performed by the modern compilers. 

Time: 3 Hours Maximum 

: 100 marks 

Answer ALL Questions 

Part A (10*2= 20 marks) 

1. What is the major limitation of pipeline techniques.. 

2. How many branch selected entries are in a (2,2) branch predictor that has a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
OR 

B) (i) Discuss about Tomasulo's Algorithm 

(ii). Explain the various dynamic branch prediction schemes. 

12) A) (i) Explain the methods of exploiting ILP using VLIW processor. 

(ii) Describe the register naming approach for implementation of 

speculation. 

OR 

B) (i) Compare the hardware VS software speculation mechanisms. 

(ii) What are the important limitations to ILP? 

13) a) Explain the models of memory consistency in multiprocessor systems. 

OR 
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b) Explain the snoopy cache coherence protocol for ensuring coherence in 

symmetric multiprocessor. 

14. a) Explain the categories of misses and how will you reduce cache miss rates. 

OR 

b) (i) Explain the steps in designing an I/O systems. 

(ii) Write a short note on fault, failures and errors. 

15) a) Explain the SUN CMP architecture. 

OR 

B) Discuss the design issues and implementation of Intel Multicore architecture. 
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CS2354/CS64/10144 CS604-ADVANCE COMPUTER ARCHITECTURE 

(Regulation 2008/2010) 

Time:Three Hours Maximum: 100 Marks 

Answer All Questions 

PART A-(10 x 2= 20 marks) 

1. What are the possible types of data hazards? 

2. What do you mean by branch prediction buffer? 
 

 
 

(or) 

b)(i) List put the decisions and transformation to be considered to obtain 

unrolled code in loop unrolling and scheduling. 

(8) 

(ii)What is static branch prediction method? Explain its use. 

(8) 

 
 

12. a)(i)Explain the problems with VLIW approach. (8) 
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3. What is VLIW? 

4. List out the major parts of Itanium Processor? 

5. When is a memory said to be coherent in a multi-processor system? 

6. Why do we need synchronization? 

7. Define the term access time , bandwidth. 

8. State the principle of locality. List the types of locality. 

9. Write the benefits of multi-core architecture. 

10.Why are design issues of SMT and CMP architectures important? 

PART A-(5 x 16= 80 marks) 

11.a)(i)Explain the three types of dependencies in instructions. 

(ii)Explain the functions of Tomasulo’s approach 

(10) 

(6) 
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(16) 

(or) 

b) (i)What is multithreading? Explain the approaches to multithreading? 

(8) 

(ii)Explain the models of memory consistency. 

(8) 

14.a)(i)Discuss the techniques for reducing Cache miss Penalty. 

(8) 

(ii)Breifly explain the types of storage devices. 

(8) 

(or) 

b)(i)Explain various levels of RAID. 

(ii)Explain about compiler speculation with hardware support. 

(8) 

 
(or) 

b)(i)Compare hardware with software speculation mechanisms. 

(8 ) 

(ii)Describe the various execution units in IA 64 processors. 

(8) 

 
13. a) Explain the function of symmetric shared memory architecture and 

compare it with Distributed Shared memory architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(8) 

(ii)List and explain various I/O performance measures. 

(8) 

15. a)(i)Describe the two levels of threads. (8) 

(ii)Discuss the factors that limits the issues in simultaneous 

multithreading.(8) 

(or) 

b)With a neat sketch, explain the architecture of IBM cell processor in 

detail. Highlight the feature of it. 

(16) 
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CS2354/CS64/10144 CS604-ADVANCED COMPUTER ARCHITECTURE 

(Regulation 2008/2010) 

Time: Three Hours Maximum: 100 Marks 

Answer All Questions 

PART A-(10 x 2= 20 marks) 

1. What is pipeline CPI? 

2. What are the uses of static branch predictors? 
 

(ii)Explain how to reduce branch costs with dynamic hardware prediction 

(8) 

(or) 

b)(i) Explain the various types of dependencies in ILP 

(8) 

(ii)Explain in detail the concept involved in Instruction level Parallelism 

(8) 

 
 

12. a)(i)Distinguish between hardware versus software speculation mechanism 

in detail(8) 

169 

3. What are the advantages of superblock approach? 

4. What are the functional units of Itanium Processor? 

5. What are the advantages of MIMD multiprocessors? 

6. What is the importance of memory consistency model? 

7. What are the categories of cache organization based on placing a block? 

8. What are the measures of I/O performance? 

9. What is multicore? 

10.What are the design issues of cell processor? 

PART A-(5 x 16= 80 marks) 

11.a)(i)What is Dynamic Scheduling? Explain how it is used to reduce data 

hazards (8) 
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(ii)Explain how the instruction format of IA64 is used to achieve the 

parallelism (8) 

 
(or) 

b)(i)Explain the trace scheduling in exploiting ILP. List its advantages 

(8 ) 

(ii)Briefly discuss the limitations of ILP 

(8) 

 
13. a) (i) what do you mean by snooping protocol? Explain how it is used to 

maintain the coherence 

 

(16) 

15. a)(i)Discuss the design challenges of SMT architecture. 

(8) 

(ii)Explain the Intel multicore architecture with its benefits. (8) 

(or) 

b) (i)Explain in detail about the CMP architecture and its performance. 

(8) 

(ii) Explain the architecture of IBM cell processor with neat block 

diagram. (8) 
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(8) 

(ii)Explain the different models of memory consistency 

(8) 

(or) 

b) (i)Discuss the directory based cache coherence protocol (8) 

(ii)Explain how the hardware primitives can be used to build 

synchronization operations (8) 

14.a)(i)Explain the various hit time reduction techniques 

(ii)Explain the RAID architecture in detail 

(or) 

(8) 

(8) 

b) What are the categories of cache misses? Explain the various 

techniques available foe reducing cache miss rate. 
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Question Paper Code:21315 

B.E./B.Tech. DEGREE EXAMINATION , MAY/JUNE 2013 

Sixth Semester 

Computer Science Engineering 

CS2354/CS64/10144 CS604-ADVANCE COMPUTER ARCHITECTURE 

(Regulation 2008/2010) 

Time:Three Hours Maximum: 100 Marks 

Answer All Questions 

PART A-(10 x 2= 20 marks) 

1. Define Dynamic Scheduling. 
 

(or) 

b)Explain how to reduce branch cost with dynamic hardware prediction. 

 
 

12. a)Explain how hardware support for exposing more parallelism at compile 

time. 

(or) 

b)Explain how hardware based speculation is used to overcome control 

dependence. 

 
13. a)Discuss about different models for memory consistency. 

(or) 
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2. List the five levels of branch prediction. 

3. Define loop-carried dependence. 

4. What is the major disadvantage of supporting speculation hardware? 

5. What is the disadvantage of using symmetric shared memory? 

6. What is consistency? 

7. What is cache miss and cache hit? 

8. What is the bus master? 

9. What are the categories of multiprocessors? 

10.What is fine grained multithreading? 

PART A-(5 x 16= 80 marks) 

11.a)Explain the concept of ILP with various types of dependencies in ILP. 
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b)Define synchronization and explain the different mechanisms employed 

for synchronization among processors. 

14. a)Explain the various levels of RAID. 

(or) 

b)Explain various ways to measure I/O Performance. 

15. a)How is multithreading used to exploit thread level parallelism within a 

processor? Explain with example. 

(or) 

b)Discuss SMT and CMP architectures in detail. 
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approach? 

3. What is instruction level parallelism and what are the two major approaches 

for ILP? 

4. What is the major disadvantage of supporting speculation hardware? 

5. Define casual consistency memory approach. 

6. What is loop unrolling and what are the major limitations of loop unrolling? 

7. What is multiprocessor cache coherence problem? 

8. What are the differences and similarities between SCSI and IDE? 

9. What is meant by simultaneous multithreading? 

10. What are the advantages of CMP architectures? 

PART A-(5 x 16= 80 marks) 

CS2354/CS64/10144 CS604-ADVANCE COMPUTER ARCHITECTURE 

(Regulation 2008) 

Time:Three Hours Maximum: 100 Marks 

Answer All Questions 

PART A-(10 x 2= 20 marks) 

1. Define temporal and spatial locality. 

2. What are the major advantages of dynamic scheduling using Tomasulo’s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
11. a)(i)Discuss about the guidelines and principles that are useful in the design 

and analysis of computers.(8) 

(ii) Explain dynamic branch prediction with an example. (8) 

(or) 

b) (i)Describe the major factors that influence the cost of a computer and 

how these factors are changing over time.(8) 

(ii) Explain hardware based speculation to overcome control 

dependencies.(8) 

 
 

12. a)(i) Briefly compare CISC, RISC and VLIW. (6) 
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(ii) Describe the architecture of a typical superscalar VLIW processor with 

the help of block diagram. (10) 

(or) 

b)(i) Describe the basic compiler techniques for exploiting instruction level 

parallelism. (10) 

(ii) Briefly compare hardware and software speculation mechanisms. (6) 

 
 

13. a)(i) What is multi-threaded architecture and what are the advantages of 

multi-threaded architecture? (6) 

(ii) Discuss about the synchronization techniques used in multiprocessor 

systems. (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b)Discuss about the major challenges and issues in the design of multi-core 

architectures. (16) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

174 

(or) 

b)(i)Explain the basic architecture of a symmetric multiprocessor system 

with the help of a block diagram. (10) 

(ii) Describe the term coarse-grained and fine-grained multithreading. (6) 

14.a)Describe various techniques for optimization of cache in detail. (16) 

(or) 

b)(i) Briefly describe standard RAID level in detail. (10) 

(ii) Discuss about the issues in designing I/O system.(6) 

15.a)(i) Describe various techniques for hardware multithreading in detail. (8) 

(ii) Explain single chip multiprocessor architecture with the help of diagram. 

(8) 

(or) 
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3. What are the advantages and disadvantages of trace scheduling method? 

4. What are the limits on Instruction Level Parallelism? 

5. What is Multiprocessor Cache Coherence? 

6. Distinguish between fine-grained and coarse-grained multithreading. 

7. Why do DRAMs generally have much larger capacities than SRAMs 

constructed in the same fabrication technology? 

8. What is the average time to read or write a 512-byte sector for a disk?The 

advertised average seek time is 5 ms.the transfer rate is 40 MB/Second,it 

rotates at 10000 RPM,and the controller overhead is 0.1 ms,Assume the 

disk is idle so that there is no queuing delay. 

9. What is Multi-Core Architecture? 

10. What are the advantages of CMP architecture? 

CS2354/CS64/10144 CS604-ADVANCE COMPUTER ARCHITECTURE 

(Regulation 2008) 

Time:Three Hours Maximum: 100 Marks 

Answer All Questions 

PART A-(10 x 2= 20 marks) 

1. Define Instruction level parallelism. 

2. What are the advantages of using dynamic scheduling? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PART A-(5 x 16= 80 marks) 

 
 

11. a)(i)Explain in Details about the various dependences caused in ILP. 

(8) 

(ii)Explain the static and dynamic branch prediction schemes in detail 

(8) 

(or) 

b)(i) Explain the Tomasulo’s Approach used in dynamic scheduling for 

overcoming data hazards. 

(8) 
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(ii)Describe how the compiler technology can be used to improve the 

performance of instruction level parallelism 

(8) 

 
 

 
12. a)(i)Explain the software pipelining method used for uncover parallelism. 

(8) 

(ii)Compare the Hardware speculation with software speculation 

(8) 

 
(or) 

 

activity and OS activity (8) 

(ii)Discuss the various memory consistency models. 

(8) 

14. a)(i)Discuss the various techniques available for reducing cache miss 

penalty (8) 

(ii)Briefly discuss the various levels of RAID 

(8) 

(or) 

b)(i)Write short notes on compiler Optimizations to reduce the miss rate. 

(8) 
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b)Discuss the essential features of Intel IA-64 Architecture and Itanium 

Processor(16) 

13.a)(i)Discuss the various cache-coherence protocols used in symmetric 

shared memory architecture. 

(8) 

(ii)What are the hardware primitives available to resolve synchronization 

issues in a multi-processor environment? Give examples. 

(8) 

(or) 

b) (i)Discuss the performance of Symmetric Shared-Memory 

Multiprocessors for a multi-programmed workload consisting of both user 
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(ii)Explain the steps involved in the designing of an I/O system. 

(8) 

15. a)(i)DExplain in detail about SMT architecture and its challenges 

(8) 

(ii)Discuss in detail about heterogeneous multi-core processors.(8) 

(or) 

b)(i)Explain the CMP architecture in detail 

(8) 

(ii)Explain the IBM cell processor concept in detail 

(8) 
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